35 research outputs found

    Microglia targeting by adeno-associated viral vectors

    Get PDF
    Microglia play a crucial role in maintaining homeostasis of the central nervous system and they are actively involved in shaping the brain’s inflammatory response to stress. Among the multitude of involved molecules, purinergic receptors and enzymes are of special importance due to their ability to regulate microglia activation. By investigating the mechanisms underlying microglial responses and dysregulation, researchers can develop more precise interventions to modulate microglial behavior and alleviate neuroinflammatory processes. Studying gene function selectively in microglia, however, remains technically challenging. This review article provides an overview of adeno-associated virus (AAV)-based microglia targeting approaches, discussing potential prospects for refining these approaches to improve both specificity and effectiveness and encouraging future investigations aimed at connecting the potential of AAV-mediated microglial targeting for therapeutic benefit in neurological disorders

    In Vivo Blockade of Murine ARTC2.2 During Cell Preparation Preserves the Vitality and Function of Liver Tissue-Resident Memory T Cells

    Get PDF
    On murine T cells, GPI-anchored ADP-ribosyltransferase 2.2 (ARTC2.2) ADP-ribosylates the P2X7 ion channel at arginine 125 in response to nicotinamide adenine dinucleotide (NAD+) released during cell preparation. We have previously shown that chronic gating of P2X7 by ADP-ribosylation reduces the vitality and function of regulatory T cells and natural killer T cells that co-express high levels of ARTC2.2 and P2X7. Here, we evaluated the expression of ARTC2.2 and P2X7 by effector and memory T cells in the liver of naïve mice and after infection with Listeria monocytogenes (Lm). We found that KLRG1−/CD69+ tissue-resident memory T cells (Trm) in the liver of naïve mice and 7 weeks after infection with Lm express high levels of ARTC2.2 and P2X7. Isolation of liver Trm and subsequent incubation at 37°C resulted in cell death of the majority of CD4+ and CD8+ Trm. Injection of the ARTC2.2-blocking nanobody s+16a 30 min prior to organ harvesting effectively prevented ADP-ribosylation of P2X7 during cell preparation and thereby prevented NAD-induced cell death of the isolated Trm upon subsequent incubation at 37°C. Consequently, preserving Trm vitality by s+16a injection enabled a highly sensitive in vitro cytokine expression profile analyses of FACS sorted liver Trm. We conclude that in vivo blockade of ARTC2.2 during cell preparation by nanobody s+16a injection represents a valuable strategy to study the role and function of liver Trm in mice

    Macrophages and glia are the dominant P2X7-expressing cell types in the gut nervous system—No evidence for the role of neuronal P2X7 receptors in colitis

    Full text link
    The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7−/−^{-/-} controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies

    IL-23 (Interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (Interleukin-17) response in stroke

    Get PDF
    Background and Purpose—Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. Methods—In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. Results—We show that the ischemic brain was rapidly infiltrated by IRF4+/CD172a+ conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c+ cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/ IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Conclusions—Our results suggest a central role for interferon regulatory factor 4-positive IL-23–producing conventional DCs in the IL-17–dependent secondary tissue damage in stroke

    Blocking P2X7 by intracerebroventricular injection of P2X7-specific nanobodies reduces stroke lesions

    Get PDF
    Background Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. Methods Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1 beta release after incubation with the P2X7-specific nbs. Results Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1 beta release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 mu g of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. Conclusion Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage

    Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model

    Get PDF
    The ATP-gated P2X7 receptor is highly expressed in microglia and has been involved in diverse brain diseases. P2X7 effects were also described in neurons and astrocytes but its localisation and function in these cell types has been challenging to demonstrate in situ. BAC transgenic mouse lines have greatly advanced neuroscience research and two BAC-transgenic P2X7 reporter mouse models exist in which either a soluble EGFP (sEGFP) or an EGFP-tagged P2X7 receptor (P2X7-EGFP) is expressed under the control of a BAC-derived P2rx7 promoter. Here we evaluate both mouse models and find striking differences in both P2X expression levels and EGFP reporter expression patterns. Most remarkably, the sEGFP model overexpresses a P2X4 passenger gene and sEGFP shows clear neuronal localisation but appears to be absent in microglia. Preliminary functional analysis in a status epilepticus model suggests functional consequences of the observed P2X receptor overexpression. In summary, an aberrant EGFP reporter pattern and possible effects of P2X4 and/or P2X7 protein overexpression need to be considered when working with this model. We further discuss reasons for the observed differences and possible caveats in BAC transgenic approaches

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Different localization of P2X4 and P2X7 receptors in native mouse lung - lack of evidence for a direct P2X4-P2X7 receptor interaction

    Get PDF
    IntroductionP2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems.MethodsHere, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis.ResultsNo detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4-/- mice.DiscussionIn summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes
    corecore