400 research outputs found

    A Mathematical Procedure for Time-Space Diagrams

    Get PDF

    Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array

    Get PDF
    Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry

    A Forty-Year-Old Woman with a History of Psychosis and a Seizure Disorder

    Get PDF
    In this issue of the Journal, we are introducing a new section. the Interdisciplinary Case Conference. Our goal will be to present psychiatric patients in whom pathology is demonstrable not only by interview, but also by physical examination,laboratory studies. and radiographic imaging techniques

    The Global Ocean Biogeochemistry (GO-BGC) array of profiling floats to observe changing ocean chemistry and biology

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Matsumoto, G., Johnson, K., Riser, S., Talley, L., Wijffels, S., & Hotinski, R. The Global Ocean Biogeochemistry (GO-BGC) array of profiling floats to observe changing ocean chemistry and biology. Marine Technology Society Journal, 56(3), (2022): 122–123, https://doi.org/10.4031/mtsj.56.3.25.The Global Ocean Biogeochemistry (GO-BGC) Array is a project funded by the US National Science Foundation to build a global network of chemical and biological sensors on Argo profiling floats. The network will monitor biogeochemical cycles and ocean health. The floats will collect from a depth of 2,000 meters to the surface, augmenting the existing Argo array that monitors ocean temperature and salinity. Data will be made freely available within a day of being collected via the Argo data system. These data will allow scientists to pursue fundamental questions concerning ocean ecosystems, monitor ocean health and productivity, and observe the elemental cycles of carbon, oxygen, and nitrogen through all seasons of the year. Such essential data are needed to improve computer models of ocean fisheries and climate, to monitor and forecast the effects of ocean warming and ocean acidification on sea life, and to address key questions identified in “Sea Change: 2015–2025 Decadal Survey of Ocean Sciences” such as: What is the ocean’s role in regulating the carbon cycle? What are the natural and anthropogenic drivers of open ocean deoxygenation? What are the consequences of ocean acidification? How do physical changes in mixing and circulation affect nutrient availability and ocean productivity?Funding for the GO-BGC Array is provided through the NSF’s Mid-Scale Research Infrastructure-2 Program (MSRI-2; NSF Award 1946578)

    Evolution of the Seasonal Surface Mixed Layer of the Ross Sea, Antarctica, Observed With Autonomous Profiling Floats

    Get PDF
    Oceanographic conditions on the continental shelf of the Ross Sea, Antarctica, affect sea ice production, Antarctic Bottom Water formation, mass loss from the Ross Ice Shelf, and ecosystems. Since ship access to the Ross Sea is restricted by sea ice in winter, most upper ocean measurements have been acquired in summer. We report the first multiyear time series of temperature and salinity throughout the water column, obtained with autonomous profiling floats. Seven Apex floats were deployed in 2013 on the midcontinental shelf, and six Air‐Launched Autonomous Micro Observer floats were deployed in late 2016, mostly near the ice shelf front. Between profiles, most floats were parked on the seabed to minimize lateral motion. Surface mixed layer temperatures, salinities, and depths, in winter were −1.8 °C, 34.34, and 250–500 m, respectively. Freshwater from sea ice melt in early December formed a shallow (20 m) surface mixed layer, which deepened to 50–80 m and usually warmed to above −0.5 °C by late January. Upper‐ocean freshening continued throughout the summer, especially in the eastern Ross Sea and along the ice shelf front. This freshening requires substantial lateral advection that is dominated by inflow from melting of sea ice and ice shelves in the Amundsen Sea and by inputs from the Ross Ice Shelf. Changes in upper‐ocean freshwater and heat content along the ice shelf front in summer affect cross‐ice front advection, ice shelf melting, and calving processes that determine the rate of mass loss from the grounded Antarctic Ice Sheet in this sector

    TGF-β receptor expression and binding in rat mesangial cells: Modulation by glucose and cyclic mechanical strain

    Get PDF
    TGF-β receptor expression and binding in rat mesangial cells: Modulation by glucose and cyclic mechanical strain.BackgroundTransforming growth factor-β (TGF-β) is a causal factor in experimental glomerulosclerosis, and it mediates the increased extracellular matrix (ECM) accumulation that occurs in cultured mesangial cells (MCs) exposed to high glucose concentrations and cyclic mechanical strain. This change is associated with increased levels of TGF-β, but may also involve alterations in receptor expression and binding.MethodsRat MCs cultured in media containing either 8 or 35 mM glucose were seeded into culture plates with elastin-coated flexible bottoms. Thereafter, they were subjected to cyclic stretch or static conditions and then examined for125I-TGF-β1 binding and expression of TGF-β receptors at the gene and protein levels.ResultsKinetic studies showed that MCs bound TGF-β1 in a time- and concentration-dependent manner, expressing 6800 high-affinity receptors per cell, with an apparent dissociation constant (Kd) of 15.4 pM, while cross-linking analysis identified three TGF-β receptors (βR) corresponding to βRI, βRII, and βRIII of 54, 73, and 200 kDa, respectively. Immunocytochemical studies of βRI and βRII protein revealed MC expression in a homogeneous, punctate distribution, whereas Northern analysis demonstrated the presence of the corresponding mRNAs. Exposure to cyclic stretching significantly increased (10%) the overall number of TGF-β receptors, whereas ligands associated with βRs I, II, and III also increased (25 to 50%). The finding of increased (30 to 40%) βRI and βRII transcript levels and immunoreactive protein (163 and 59%, respectively) in the absence of significant changes in the apparent Kd indicated that stretch-induced binding was the result of increased receptor synthesis and expression and not due to a change in binding affinity. In a similar, but more dramatic fashion, exposure to high glucose also elevated (50%) the receptor number, as well as the amount of ligands associated with βRs I, II, and III (100 to 250%). This same treatment also increased the levels of βRI and βRII mRNA (30 to 40%) and the immunoreactive protein (82 and 82%, respectively), without significantly altering the binding affinity of the receptor. A concerted or synergistic effect of both stimuli was not evidenced.ConclusionThese results suggest that the modulation of TGF-β receptors may be an additional control point in mediating the glucose- and mechanical force-induced increase in ECM deposition by MCs

    Chronic recurrent multifocal osteomyelitis, central retinal artery occlusion and optic neuropathy: A new association

    Get PDF
    Purpose: To report a patient with chronic recurrent multifocal osteomyelitis (CRMO) complicated by optic neuropathy and central retinal artery occlusion (CRAO). Observations: CRMO is a noninfectious, inflammatory bone disorder. It is thought to be an autoimmune condition related to an imbalance of pro- and anti-inflammatory cytokines. Retinal vasculitis has been reported in a patient with CRMO but not CRAO or optic neuropathy. Conclusions: We expanded the list of ophthalmic involvement of CRMO to include CRAO and optic neuropathy

    Phorbol ester binding and phorol ester-induced arachidonic acid metabolism in a highly responsive murine fibrosarcoma cell line and in a less-responsive variant

    Full text link
    Phorbol ester binding was examined in two lines of murine fibrosarcoma cells. The two cell lines were isolated from the same parent tumor but respond differentially to stimulation with phorbol esters. In one of the lines, these agents stimulate a rapid attachment and spreading response and induce directional migration. The other cell line does not migrate in response to stimulation with phorbol esters and the attachment and spreading response is slow. The cell line which responds actively to phorbol ester stimulation is highly malignant when injected into syngeneic animals while the other line is of low tumorigenicity and is virtually non-metastatic. In spite of these differences, both lines were found in the present study to bind [ 3 H]4β-phorbol-12β, 13α-dibutyrate in a receptor-mediated fashion. The characteristics of binding were virtually identical between the two cell lines. In additional studies, arachidonic acid metabolism was examined in the same two lines. In the highly responsive line, PMA stimulated a rapid release of [ 3 H]arachidonic acid and its conversion into cyclooxygenase and lipoxygenase products. In the less-responsive line, PMA stimulated a slower release of [ 3 H]arachidonic acid from prelabeled cells. The quantity of arachidonic acid metabolites produced was also much less. These studies suggest that the disparity between the two cell lines in their response to phorbol ester stimulation is not the result of differences in the initial interaction between the cells and ligand but may result from alterations in their signal transductance mechanism. This may be the result of inherent differences in capacity for arachidonic acid metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42593/1/10585_2004_Article_BF00053473.pd

    Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-beta 1, and vascular endothelial growth factor

    Get PDF
    Introduction: Encapsulating peritoneal sclerosis (EPS) is a devastating complication of peritoneal dialysis (PD). The pathogenesis is not exactly known and no preventive strategy or targeted medical therapy is available. CCN2 has both pro-fibrotic and pro-angiogenic actions and appears an attractive target. Therefore, we studied peritoneal expression of CCN2, as well as TGFb1 and VEGF, in different stages of peritoneal fibrosis. Materials and methods: Sixteen PD patients were investigated and compared to 12 hemodialysis patients and four pre-emptively transplanted patients. Furthermore, expression was investigated in 12 EPS patients in comparison with 13 PD and 12 non-PD patients without EPS. Peritoneal tissue was taken during kidney transplantation procedure or during EPS surgery. In a subset of patients, CCN2 protein levels in peritoneal effluent and plasma were determined. Samples were examined by qPCR, histology, immunohistochemistry, and ELISA. Results: Peritoneal CCN2 expression was 5-fold higher in PD patients compared to pre-emptively transplanted patients (P<0.05), but did not differ from hemodialysis patients. Peritoneal expression of TGF beta 1 and VEGF were not different between the three groups; neither was peritoneal thickness. Peritoneum of EPS patients exhibited increased expression of CCN2 (35-fold, P<0.001), TGF beta 1 (24-fold, P<0.05), and VEGF (77-fold, P<0.001) compared to PD patients without EPS. In EPS patients, CCN2 protein was mainly localized in peritoneal endothelial cells and fibroblasts. CCN2 protein levels were significantly higher in peritoneal effluent of EPS patients compared to levels in dialysate of PD patients (12.0 +/- 4.5 vs. 0.91 +/- 0.92 ng/ml, P<0.01), while plasma CCN2 levels were not increased. Conclusions: Peritoneal expression of CCN2, TGF beta 1, and VEGF are significantly increased in EPS patients. In early stages of peritoneal fibrosis, only CCN2 expression is slightly increased. Peritoneal CCN2 overexpression in EPS patients is a locally driven response. The potential of CCN2 as biomarker and target for CCN2-inhibiting agents to prevent or treat EPS warrants further study

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed
    corecore