15 research outputs found

    Contulma paluguillensis (Trichoptera:Anomalopsychidae), a new caddisfly from the high Andes of Ecuador, and its natural history

    Get PDF
    Adults and larvae of a new species of Contulma Flint (Trichoptera:Anomalopsychidae) are described from Ecuador. The new species is similar to Contulma papallacta Holzenthal and Flint, but differs in having shorter, less spatulate dorsolateral processes and shorter setose lateral processes of segment IX in the male genitalia. Monthly Hess, sticky trap, and emergence-trap collections indicated that the new species is uncommon, probably univoltine, but with continuous larval growth and extended adult emergence, and has algivorous larvae

    Nectopsyche of Ecuador: a new species from the high Andean páramo and redescription of Nectopsyche spiloma (Ross) (Trichoptera: Leptoceridae)

    Get PDF
    The male and female of a new species of long-horned caddisfly, Nectopsyche paramo, are described from the high Andes of Ecuador. The new species was found above 4,000 m, representing the highest recorded elevation for a species in the genus. The larval stage of the species is also described. Only a total of 13 larvae were collected during a 17-month sampling program and 11 adults, suggesting that the species is rare. Larvae were found mainly in leaf packs. A male and female were observed in a mating swarm ca. 3 m above a stream during late afternoon. In addition, we redescribe the adult male of Nectopsyche spiloma (Ross), previously known from Ecuador from unsubstantiated literature records

    Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems

    Get PDF
    Urban streams can provide amenities to people living in cities, but those benefits are reduced when streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions invest resources to improve the values and services provided by urban streams; however, the conception, development, and implementation of such projects may not include meaningful involvement of community members and other stakeholders. Consequently, project objectives may be misaligned with community desires and needs, and projects may fail to achieve their goals. In February 2020, the 5(th) Symposium on Urbanization and Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating community members into project identification and decision making. The symposium included in-depth discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents, and input from the Austin community. Institutional barriers to community inclusion were identified and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges the present institutional approach to urban stream management and a set of strategies to systematically address these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can help identify appropriate goals for realizing both the ecological and social benefits of stream restoration

    Community-powered urban stream restoration: A vision for sustainable and resilient urban ecosystems

    Get PDF
    Este artículo contiene 16 páginas, 2 tablas, 3 figuras.Urban streams can provide amenities to people living in cities, but those benefits are reduced when streams become degraded, potentially even causing harm (disease, toxic compounds, etc.). Governments and institutions invest resources to improve the values and services provided by urban streams; however, the conception, development, and implementation of such projects may not include meaningful involvement of community members and other stakeholders. Consequently, project objectives may be misaligned with community desires and needs, and projects may fail to achieve their goals. In February 2020, the 5th Symposium on Urbanization and Stream Ecology, an interdisciplinary meeting held every 3 to 5 y, met in Austin, Texas, USA, to explore new approaches to urban stream projects, including ways to maximize the full range of potential benefits by better integrating community members into project identification and decision making. The symposium included in-depth discussion about 4 nearby field case studies, participation of multidisciplinary urban stream experts from 5 continents, and input from the Austin community. Institutional barriers to community inclusion were identified and analyzed using real-world examples, both from the case studies and from the literature, which clarified disparities in power, equity, and values. Outcomes of the symposium have been aggregated into a vision that challenges the present institutional approach to urban stream management and a set of strategies to systematically address these barriers to improve restoration solutions. Integrating community members and other stakeholders throughout the urban restoration process, and a transparent decision-making process to resolve divergent objectives, can help identify appropriate goals for realizing both the ecological and social benefits of stream restoration.Publication costs were covered by an award from the Society of Freshwater Science’s Endowed Publication Fund (https:// freshwater-science.org/publications/endowed-publication-fund).Peer reviewe

    Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?

    No full text
    Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46%) explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35%) used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change

    The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation

    Get PDF
    Score-based biotic indices are widely used to evaluate the water quality of streams and rivers. Few adaptations of these indices have been done for South America because there is a lack of knowledge on macroinvertebrate taxonomy, distribution and tolerance to pollution in the region. Several areas in the Andes are densely populated and there is need for methods to assess the impact of increasing human pressures on aquatic ecosystems. Considering the unique ecological and geographical features of the Andes, macroinvertebrate indices used in other regions must be adapted with caution. Here we present a review of the literature on macroinvertebrate distribution and tolerance to pollution in Andean areas above 2 000masl. Using these data, we propose an Andean Biotic Index (ABI), which is based on the BMWP index. In general, ABI includes fewer macroinvertebrate families than in other regions of the world where the BMWP index has been applied because altitude restricts the distribution of several families. Our review shows that in the high Andes, the tolerance of several macroinvertebrate families to pollution differs from those reported in other areas. We tested the ABI index in two basins in Ecuador and Peru, and compared it to other BMWP adaptations using the reference condition approach. The ABI index is extremely useful for detecting the general impairment of rivers but class quality boundaries should be defined independently for each basin because reference conditions may be different. The ABI is widely used in Ecuador and Peru, with high correlations with land-use pressures in several studies. The ABI index is an integral part of the new multimetric index designed for high Andean streams (IMEERA). Rev. Biol. Trop. 62 (Suppl. 2): 249-273. Epub 2014 April 01.Los índices bióticos basados en puntuación son ampliamente utilizados para evaluar la calidad del agua de los arroyos y ríos. Varias áreas de los Andes están densamente pobladas y hay necesidad de métodos para evaluar el impacto de la creciente presión humana sobre los ecosistemas acuáticos. Dadas las características ecológicas y geográficas únicas de los Andes, los índices de macroinvertebrados utilizados en otras regiones deben adaptarse con cautela. Aquí se presenta una revisión de la literatura sobre distribución de macroinvertebrados y la tolerancia a la contaminación en las zonas andinas por encima de 2 000msnm. Usando estos datos, se propone un Índice Biolótico Andino (ABI), que se basa en el índice de BMWP. En general, ABI incluye un menor número de familias de macroinvertebrados que en otras regiones del mundo donde se ha aplicado el índice BMWP porque la altitud restringe la distribución de varias de ellas. Nuestra revisión muestra que la tolerancia de varias familias a la contaminación en los ríos altoandinos difiere de lo reportado en otras áreas. Probamos el índice ABI en dos cuencas en Ecuador y Perú, y comparamos con otras adaptaciones BMWP utilizando el enfoque de condición de referencia. Nuestros resultados muestran que el índice de ABI es extremadamente útil para detectar el deterioro general de los ríos, pero que los límites entre las clases de calidad deben ser definidos independientemente para cada cuenca debido a que las condiciones de referencia pueden ser diferentes. El ABI es ampliamente utilizado en Ecuador y Perú, y es parte integral del nuevo índice multimétrico diseñado para corrientes altas andinas (IMEERA)

    Seasonality and predictability shape temporal species diversity

    No full text
    Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non‐nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we developed a framework for quantifying both seasonality and predictability of habitats, and applied this using global long‐term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly predictable and highly seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly seasonal mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g., dam operations, bioassessment) spanning gradients of climatic variability

    Urban stream renovation : incorporating societal objectives to achive ecological improvements

    No full text
    Pervasive human impacts on urban streams make restoration to predisturbance conditions unlikely. The effective- ness of ecologically focused restoration approaches typically is limited in urban settings because of the use of a reference-condition approach, mismatches between the temporal and spatial scales of impacts and restoration activities, and lack of an integrative ap- proach that incorporates ecological and societal objectives. Developers of new frameworks are recognizing the opportunities for and benefits from incorporating societal outcomes into urban stream restoration projects. Social, economic, cultural, or other benefits to local communities are often opportunistic or arise indirectly from actions intended to achieve ecological outcomes. We propose urban stream renovation as a flexible stream improvement framework in which short-term ecological and societal outcomes are leveraged to achieve long-term ecological objectives. The framework is designed to provide additional opportunities for beneficial outcomes that are often unattainable from ecologically focused restoration approaches. Urban stream renovation uses an iterative process whereby short-term ecological and societal outcomes generate public support for future actions, which may provide opportunities to address catchment-level causes of impairment that often exist across broad temporal scales. Adaptive management, education, and outreach are needed to maintain long-term public engagement. Thus, future work should focus on understanding how ecological and societal contexts interact, how to assess societal outcomes to maintain stewardship, developing new methods for effective education and outreach, and multidisciplinary collaborations. We discuss potential abuses and the im- portance of linking societal outcomes to long-term ecological objectives.
    corecore