206 research outputs found

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Adaptive Filtering Enhances Information Transmission in Visual Cortex

    Full text link
    Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depend on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.Comment: 20 pages, 11 figures, includes supplementary informatio

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Receptive Field Inference with Localized Priors

    Get PDF
    The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets

    Community-based benchmarking improves spike rate inference from two-photon calcium imaging data

    Get PDF
    In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience

    Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions

    Get PDF
    The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complexities can bias receptive field (RF) estimates when standard techniques such as spike-triggered averaging or reverse correlation are used. While a number of approaches have been developed to explicitly correct the bias due to stimulus correlations, there is no complementary technique to correct the bias due to stimulus asymmetries. Here, we develop a method for RF estimation that corrects reverse correlation RF estimates for the spherical asymmetries present in natural stimuli. Using simulated neural responses, we demonstrate how stimulus asymmetries can bias reverse-correlation RF estimates (even for uncorrelated stimuli) and illustrate how this bias can be removed by explicit correction. We demonstrate the utility of the asymmetry correction method under experimental conditions by estimating RFs from the responses of retinal ganglion cells to natural stimuli and using these RFs to predict responses to novel stimuli

    Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation.

    Get PDF
    Historically, the concepts of field-independence, closure flexibility, and weak central coherence have been used to denote a locally, rather globally, dominated perceptual style. To date, there has been little attempt to clarify the relationship between these constructs, or to examine the convergent validity of the various tasks purported to measure them. To address this, we administered 14 tasks that have been used to study visual perceptual styles to a group of 90 neuro-typical adults. The data were subjected to exploratory factor analysis. We found evidence for the existence of a narrowly defined weak central coherence (field-independence) factor that received loadings from only a few of the tasks used to operationalise this concept. This factor can most aptly be described as representing the ability to dis-embed a simple stimulus from a more complex array. The results suggest that future studies of perceptual styles should include tasks whose theoretical validity is empirically verified, as such validity cannot be established merely on the basis of a priori task analysis. Moreover, the use of multiple indices is required to capture the latent dimensions of perceptual styles reliably

    Invariant computations in local cortical networks with balanced excitation and inhibition

    Get PDF
    [Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning

    The emergence of functional microcircuits in visual cortex.

    No full text
    Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured and excitatory neurons form subnetworks that process related sensory information. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience--a process that may be facilitated by early electrical coupling between neuronal subsets--and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections

    Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    Get PDF
    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NAPV was supported by Centro Universitario do Rio Grande do Norte, Champalimaud Foundation, and Brazilian National Council for Scientific and Technological Development (CNPq, Grant 249991/2013-6), CC-S (SFRH/BD/51992/2012). AJR (IF/00883/2013). SR by UFRN, CNPq (Research Productivity Grant 308775/2015-5), and S. Paulo Research Foundation FAPESP - Center for Neuromathematics (Grant 2013/07699-0)info:eu-repo/semantics/publishedVersio
    corecore