1,341 research outputs found
Recommended from our members
Attachment and styles of conflict resolution in close relationships.
Thesis (M.S.
Engineering Functional Quantum Algorithms
Suppose that a quantum circuit with K elementary gates is known for a unitary
matrix U, and assume that U^m is a scalar matrix for some positive integer m.
We show that a function of U can be realized on a quantum computer with at most
O(mK+m^2log m) elementary gates. The functions of U are realized by a generic
quantum circuit, which has a particularly simple structure. Among other
results, we obtain efficient circuits for the fractional Fourier transform.Comment: 4 pages, 2 figure
Effects of Modification of Pain Protocol on Incidence of Post Operative Nausea and Vomiting.
BackgroundA Perioperative Surgical Home (PSH) care model applies a standardized multidisciplinary approach to patient care using evidence-based medicine to modify and improve protocols. Analysis of patient outcome measures, such as postoperative nausea and vomiting (PONV), allows for refinement of existing protocols to improve patient care. We aim to compare the incidence of PONV in patients who underwent primary total joint arthroplasty before and after modification of our PSH pain protocol.MethodsAll total joint replacement PSH (TJR-PSH) patients who underwent primary THA (n=149) or TKA (n=212) in the study period were included. The modified protocol added a single dose of intravenous (IV) ketorolac given in the operating room and oxycodone immediate release orally instead of IV Hydromorphone in the Post Anesthesia Care Unit (PACU). The outcomes were (1) incidence of PONV and (2) average pain score in the PACU. We also examined the effect of primary anesthetic (spinal vs. GA) on these outcomes. The groups were compared using chi-square tests of proportions.ResultsThe incidence of post-operative nausea in the PACU decreased significantly with the modified protocol (27.4% vs. 38.1%, p=0.0442). There was no difference in PONV based on choice of anesthetic or procedure. Average PACU pain scores did not differ significantly between the two protocols.ConclusionSimple modifications to TJR-PSH multimodal pain management protocol, with decrease in IV narcotic use, resulted in a lower incidence of postoperative nausea, without compromising average PACU pain scores. This report demonstrates the need for continuous monitoring of PSH pathways and implementation of revisions as needed
Windsurfing : an extreme form of material and embodied interaction?
This paper makes reference to the development of water based board sports in the world of adventure or action games. With a specific focus on windsurfing, we use Parlebas (1999) and Warnier's (2001) theoretical interests in the praxaeology of physical learning as well as Mauss' (1935) work on techniques of the body. We also consider the implications of Csikzentimihalyi's notion of flow (1975). We argue that windsurfing equipment should not merely be seen as protection but rather as status objects through which extreme lifestyles are embodied and embodying
Generalized Classical BRST Cohomology and Reduction of Poisson Manifolds
In this paper, we formulate a generalization of the classical BRST
construction which applies to the case of the reduction of a poisson manifold
by a submanifold. In the case of symplectic reduction, our procedure
generalizes the usual classical BRST construction which only applies to
symplectic reduction of a symplectic manifold by a coisotropic submanifold,
\ie\ the case of reducible ``first class'' constraints. In particular, our
procedure yields a method to deal with ``second-class'' constraints. We
construct the BRST complex and compute its cohomology. BRST cohomology vanishes
for negative dimension and is isomorphic as a poisson algebra to the algebra of
smooth functions on the reduced poisson manifold in zero dimension. We then
show that in the general case of reduction of poisson manifolds, BRST
cohomology cannot be identified with the cohomology of vertical differential
forms.Comment: 3
Questioning policy, youth participation and lifestyle sports
Young people have been identified as a key target group for whom participation in sport and physical activity could have important benefits to health and wellbeing and consequently have been the focus of several government policies to increase participation in the UK. Lifestyle sports represent one such strategy for encouraging and sustaining new engagements in sport and physical activity in youth groups, however, there is at present a lack of understanding of the use of these activities within policy contexts. This paper presents findings from a government initiative which sought to increase participation in sport for young people through provision of facilities for mountain biking in a forest in south-east England. Findings from qualitative research with 40 young people who participated in mountain biking at the case study location highlight the importance of non-traditional sports as a means to experience the natural environments through forms of consumption which are healthy, active and appeal to their identities. In addition, however, the paper raises questions over the accessibility of schemes for some individuals and social groups, and the ability to incorporate sports which are inherently participant-led into state-managed schemes. Lifestyle sports such as mountain biking involve distinct forms of participation which present a challenge for policy-makers who seek to create and maintain sustainable communities of youth participants
The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing
Quantum computing architectures are on the verge of scalability, a key
requirement for the implementation of a universal quantum computer. The next
stage in this quest is the realization of quantum error correction codes, which
will mitigate the impact of faulty quantum information on a quantum computer.
Architectures with ten or more quantum bits (qubits) have been realized using
trapped ions and superconducting circuits. While these implementations are
potentially scalable, true scalability will require systems engineering to
combine quantum and classical hardware. One technology demanding imminent
efforts is the realization of a suitable wiring method for the control and
measurement of a large number of qubits. In this work, we introduce an
interconnect solution for solid-state qubits: The quantum socket. The quantum
socket fully exploits the third dimension to connect classical electronics to
qubits with higher density and better performance than two-dimensional methods
based on wire bonding. The quantum socket is based on spring-mounted micro
wires the three-dimensional wires that push directly on a micro-fabricated
chip, making electrical contact. A small wire cross section (~1 mmm), nearly
non-magnetic components, and functionality at low temperatures make the quantum
socket ideal to operate solid-state qubits. The wires have a coaxial geometry
and operate over a frequency range from DC to 8 GHz, with a contact resistance
of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a
proof of principle, we fabricated and used a quantum socket to measure
superconducting resonators at a temperature of ~10 mK.Comment: Main: 31 pages, 19 figs., 8 tables, 8 apps.; suppl.: 4 pages, 5 figs.
(HiRes figs. and movies on request). Submitte
- …