13 research outputs found

    Thermal characteristics of container for on-site irradiated nuclear fuel transportation

    Get PDF
    Paper presented at the 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Mauritius, 11-13 July, 2011.An object of analysis in this paper is the container, which was developed for transportation of irradiated RBMK-1500 nuclear fuel assemblies at the Ignalina Nuclear Power Plant (NPP). Ignalina NPP (Lithuania) comprises two Units with RBMK-1500 reactors. After the Unit 1 of the Ignalina Nuclear Power Plant was shut down in 2004, approximately 1000 fuel assemblies from Unit 1 were safely transported and reused in the reactor of Unit 2 before final shutdown of the Unit 2 reactor in 2009. The RBMK reactor is continuously reloaded at power. Therefore the reactor core contains fuel assemblies with different burn-up level. After permanent reactor shutdown hundreds of fuel assemblies in the reactor core have considerably less burn-up than their design value. Such fuel assemblies have high energetic potential and can be reused. The fuel-transportation container, vehicle, protection shaft and other necessary equipment were designed in order to implement the process for on-site transportation of Unit 1 Fuel Assemblies for reuse in the Unit 2. The developed equipment can be used also in decommissioning phase for fuel transportation to fuel storage facilities. The set of this equipment can be applied for NPP-s with RBMK type reactors. The structural integrity, thermal, radiological and nuclear criticality safety calculations were performed to assess the acceptance of the proposed set of equipment. The purpose of this paper is to present the results of thermal analysis of new developed container, which was used for transportation of irradiated RBMK-1500 nuclear fuel assemblies. Using finite element code the irradiated fuel transportation container model was developed and influence of an environment temperature and influence of different axial fuel power density profiles over container temperatures field was determined. Performed analysis demonstrated that the temperatures in proposed nuclear fuel transportation container do not exceed acceptance limits for both normal operation and accident conditions.mp201

    Application of COCOSYS code for investigation of gas mixing in mistra test facility

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In the case of a severe accident in a water-cooled nuclear power plant large amounts of hydrogen could be generated due to fuel claddings oxidation and released to the containment. At certain concentrations of steam air and hydrogen the hydrogen combustion could occur and challenge the structural integrity of the containment, which is a last barrier preventing from radioactive material release to the environment. Therefore, a detailed knowledge of containment thermal-hydraulics is necessary to predict the local distribution of hydrogen, steam and air inside the containment. This paper presents the experience of Lithuanian Energy Institute in simulation of the experiments performed in MISTRA test facility for the case of the International Standard Problem ISP47. The MISTRA facility is located in the Saclay center of France Atomic Energy Commissariat (CEA) and is related to the research of containment thermal-hydraulics and hydrogen safety. The MISTRA facility and its operating conditions are designed with reference to the containment conditions of a pressurized water reactor (PWR) in accident situation. The facility comprises containment inside which three condensers are set up and external circuits. Containment volume is ~100 m3, with an internal diameter of 4.25 m and a height of 7.3 m. Containment is not temperature regulated, but preheated by steam condensation and thermally insulated. The relevant physical phenomena for simulation are the following: 1)centered steam and helium (instead of hydrogen) injection in the containment; 2) pressure and temperature increase in the containment; 3) wall condensation at regulated wall temperature; and 4) flow pattern in the containment and resulting gas temperature and concentration distribution. Test sequence consisted of several transient and steady state stages, when the measurements of the gas temperature and gas concentration profiles where performed. The presented analyses were performed employing the code COCOSYS versions V2.0v2 and V2.3 developed at GRS mbH (Germany). COCOSYS is a lumped-parameter code for the comprehensive simulation of all relevant phenomena, processes and plant states during severe accidents in the containment of light water reactors. The free convection, forced convection, radiation heat transfer and condensation may be considered in the analysis. The condensation model is based on the heat and mass transfer analogy (Stefan’s law). The water and gas flows are calculated separately, i.e. different junctions have to be specified for these flows. Several zone models could be selected by the user. The EQUIL._MOD zone model assumes the perfect steam, gas and water mixture inside a zone. Each component of the mixture is in thermal equilibrium. NONEQUILIB model considers the water and gas mixture, which is not necessarily in thermal equilibrium, i.e. water and gas may have different temperatures and calculated separately in the energy balance. The experimental and analytical analyses showed that gas stratification was not observed and well-mixed atmosphere conditions were reached for the investigated case.dc201

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Integrated failure probability estimation based on structural integrity analysis and failure data Natural gas pipeline case

    No full text
    International audienceIn this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well

    Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    No full text
    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    Get PDF
    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3  ×  1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre

    Magnetic configuration effects on the Wendelstein 7-X stellarator

    No full text
    The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    No full text
    \u3cp\u3eAfter completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 10\u3csup\u3e19\u3c/sup\u3e m\u3csup\u3e-3\u3c/sup\u3e, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.\u3c/p\u3
    corecore