6,268 research outputs found

    Machine learning to predict sports-related concussion recovery using clinical data

    Get PDF
    ObjectivesSport-related concussions (SRCs) are a concern for high school athletes. Understanding factors contributing to SRC recovery time may improve clinical management. However, the complexity of the many clinical measures of concussion data precludes many traditional methods. This study aimed to answer the question, what is the utility of modeling clinical concussion data using machine-learning algorithms for predicting SRC recovery time and protracted recovery? MethodsThis was a retrospective case series of participants aged 8 to 18 years with a diagnosis of SRC. A 6-part measure was administered to assess pre-injury risk factors, initial injury severity, and post-concussion symptoms, including the Vestibular Ocular Motor Screening (VOMS) measure, King-Devick Test and C3 Logix Trails Test data. These measures were used to predict recovery time (days from injury to full medical clearance) and binary protracted recovery (recovery time \u3e 21 days) according to several sex-stratified machine-learning models. The ability of the models to discriminate protracted recovery was compared to a human-driven model according to the area under the receiver operating characteristic curve (AUC). ResultsFor 293 males (mean age 14.0 years) and 362 females (mean age 13.7 years), the median (interquartile range) time to recover from an SRC was 26 (18–39) and 21 (14–31) days, respectively. Among 9 machine-learning models trained, the gradient boosting on decision-tree algorithms achieved the best performance to predict recovery time and protracted recovery in males and females. The models’ performance improved when VOMS data were used in conjunction with the King-Devick Test and C3 Logix Trails Test data. For males and females, the AUC was 0.84 and 0.78 versus 0.74 and 0.73, respectively, for statistical models for predicting protracted recovery. ConclusionsMachine-learning models were able to manage the complexity of the vestibular-ocular motor system data. These results demonstrate the clinical utility of machine-learning models to inform prognostic evaluation for SRC recovery time and protracted recovery

    Properties of High-Latitude CME-Driven Disturbances During Ulysses Second Northern Polar Passage

    Get PDF
    Ulysses observed five coronal mass ejections (CMEs) and their associated disturbances while the spacecraft was immersed in the polar coronal hole (CH) flow above 70° N in late 2001. Of these CMEs, two were very fast (\u3e850 km s−1) driving strong shocks in the wind ahead, and two others were over-expanding. The two fast CMEs were observed leaving the Sun by LASCO/SOHO, and were observed in the ecliptic by Genesis and ACE. These were large events, spanning at least from the northern heliospheric pole to the ecliptic. One-dimensional hydrodynamic simulations indicate that these could be described as overpressured CMEs launched from the Sun at speeds initially faster than ambient, but then decelerating to the ambient solar wind speed as they propagated outward. The two over-expanding CMEs mark their first occurrence since Ulysses’ first orbit when such CMEs were only observed in polar CH flow

    Simulating quantum-optical phenomena with cold atoms in optical lattices

    Get PDF
    We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light-matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples such as superradiance and directional emission. We also show how the same setup can simulate Bose-Hubbard Hamiltonians with extended hopping as well as Ising models with long-range interactions. We believe that this system can be realized with state of the art technology

    Enhanced He-alpha emission from "smoked" Ti targets irradiated with 400nm, 45 fs laser pulses

    Get PDF
    We present a study of He-like 1s(2)-1s2p line emission from solid and low-density Ti targets under similar or equal to 45 fs laser pulse irradiation with a frequency doubled Ti: Sapphire laser. By varying the beam spot, the intensity on target was varied from 10(15) W/cm(2) to 10(19) W/cm(2). At best focus, low density "smoked" Ti targets yield similar to 20 times more He-alpha than the foil targets when irradiated at an angle of 45 degrees with s-polarized pulses. The duration of He-alpha emission from smoked targets, measured with a fast streak camera, was similar to that from Ti foils

    Vortical and Wave Modes in 3D Rotating Stratified Flows: Random Large Scale Forcing

    Full text link
    Utilizing an eigenfunction decomposition, we study the growth and spectra of energy in the vortical and wave modes of a 3D rotating stratified fluid as a function of ϵ=f/N\epsilon = f/N. Working in regimes characterized by moderate Burger numbers, i.e. Bu=1/ϵ2<1Bu = 1/\epsilon^2 < 1 or Bu1Bu \ge 1, our results indicate profound change in the character of vortical and wave mode interactions with respect to Bu=1Bu = 1. As with the reference state of ϵ=1\epsilon=1, for ϵ<1\epsilon < 1 the wave mode energy saturates quite quickly and the ensuing forward cascade continues to act as an efficient means of dissipating ageostrophic energy. Further, these saturated spectra steepen as ϵ\epsilon decreases: we see a shift from k1k^{-1} to k5/3k^{-5/3} scaling for kf<k<kdk_f < k < k_d (where kfk_f and kdk_d are the forcing and dissipation scales, respectively). On the other hand, when ϵ>1\epsilon > 1 the wave mode energy never saturates and comes to dominate the total energy in the system. In fact, in a sense the wave modes behave in an asymmetric manner about ϵ=1\epsilon = 1. With regard to the vortical modes, for ϵ1\epsilon \le 1, the signatures of 3D quasigeostrophy are clearly evident. Specifically, we see a k3k^{-3} scaling for kf<k<kdk_f < k < k_d and, in accord with an inverse transfer of energy, the vortical mode energy never saturates but rather increases for all k<kfk < k_f. In contrast, for ϵ>1\epsilon > 1 and increasing, the vortical modes contain a progressively smaller fraction of the total energy indicating that the 3D quasigeostrophic subsystem plays an energetically smaller role in the overall dynamics.Comment: 18 pages, 6 figs. (abbreviated abstract

    Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period

    Get PDF
    The current solar cycle minimum seems to have unusual properties that appear to be related to weak solar polar magnetic fields. We investigate signatures of this unusual polar field in the ecliptic near-Earth interplanetary magnetic field (IMF) for the STEREO period of observations. Using 1 AU OMNI data, we find that for the current solar cycle declining phase to minimum period the peak of the distribution for the values of the ecliptic IMF magnitude is lower compared to a similar phase of the previous solar cycle. We investigate the sources of these weak fields. Our results suggest that they are related to the solar wind stream structure, which is enhanced by the weak polar fields. The direct role of the solar field is therefore complicated by this effect, which redistributes the solar magnetic flux at 1 AU nonuniformly at low to mid heliolatitudes

    Quantum memory with a single two-level atom in a half cavity

    Full text link
    We propose a setup for quantum memory based on a single two-level atom in a half cavity with a moving mirror. We show that various temporal shapes of incident photon can be efficiently stored and readout by shaping the time-dependent decay rate γ(t)\gamma(t) between the atom and the light. This is achieved uniquely by an appropriate motion of the mirror without the need for additional control laser or atomic level. We present an analytical expression for the efficiency of the process and study its dependence on the ratio between the incident light field bandwidth and the atomic decay rate. We discuss possible implementations and experimental issues, particularly for a single atom or ion in a half cavity quantum optical setup as well as a superconducting qubit in the context of circuit QED.Comment: 8 pages, 3 figure

    A Model for the Analysis of Caries Occurrence in Primary Molar Tooth Surfaces

    Get PDF
    Recently methods of caries quantification in the primary dentition have moved away from summary ‘whole mouth’ measures at the individual level to methods based on generalised linear modelling (GLM) approaches or survival analysis approaches. However, GLM approaches based on logistic transformation fail to take into account the time-dependent process of tooth/surface survival to caries. There may also be practical difficulties associated with casting parametric survival-based approaches in a complex multilevel hierarchy and the selection of an optimal survival distribution, while non-parametric survival methods are not generally suitable for the assessment of supplementary information recorded on study participants. In the current investigation, a hybrid semi-parametric approach comprising elements of survival-based and GLM methodologies suitable for modelling of caries occurrence within fixed time periods is assessed, using an illustrative multilevel data set of caries occurrence in primary molars from a cohort study, with clustering of data assumed to occur at surface and tooth levels. Inferences of parameter significance were found to be consistent with previous parametric survival-based analyses of the same data set, with gender, socio-economic status, fluoridation status, tooth location, surface type and fluoridation status-surface type interaction significantly associated with caries occurrence. The appropriateness of the hierarchical structure facilitated by the hybrid approach was also confirmed. Hence the hybrid approach is proposed as a more appropriate alternative to primary caries modelling than non-parametric survival methods or other GLM-based models, and as a practical alternative to more rigorous survival-based methods unlikely to be fully accessible to most researchers

    A "cookbook" for vulnerability research

    Get PDF
    There is a growing need to facilitate the interdisciplinary study of the relationship between the environment and human health and well-being. It is increasingly recognized that vulnerability is a key construct allowing discipline-specific research questions on these topics to be meaningfully contextualized. However, there is little consensus regarding the meaning of the concept of vulnerability or how it can best be utilized in research studies. In this perspective article, we use the metaphor of a "cookbook" to review promising trends in vulnerability research and to make this body of research accessible to a multi-disciplinary audience. Specifically, we discuss a selection of "recipes" (theoretical frameworks), "ingredients" (vulnerability domains), "cooking tools" (qualitative and quantitative methods), and approaches to "meal presentation" (communication of results) drawn from vulnerability studies published in the past 15 years. Our aim is for this short "cookbook" to serve as a jumping-off point for scholars unfamiliar with the vulnerability literature and an inspiration for scholars more familiar with this topic to develop new ways to navigate the tension between locally-specific assessments of vulnerability and attempts at standardization. Our ultimate take-home message is that the specifics theories and methods used in vulnerability research are less important than attention to what we see as the 3 'T's of transparency, triangulation, and transferability, and to efforts to make vulnerability research both "place-based" and comparable
    corecore