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A B S T R A C T

Objectives: Sport-related concussions (SRCs) are a concern for high school athletes. Understanding factors
contributing to SRC recovery time may improve clinical management. However, the complexity of the many
clinical measures of concussion data precludes many traditional methods. This study aimed to answer the
question, what is the utility of modeling clinical concussion data using machine-learning algorithms for pre-
dicting SRC recovery time and protracted recovery?
Methods: This was a retrospective case series of participants aged 8 to 18 years with a diagnosis of SRC. A 6-
part measure was administered to assess pre-injury risk factors, initial injury severity, and post-concussion
symptoms, including the Vestibular Ocular Motor Screening (VOMS) measure, King-Devick Test and C3 Logix
Trails Test data. These measures were used to predict recovery time (days from injury to full medical clear-
ance) and binary protracted recovery (recovery time > 21 days) according to several sex-stratified machine-
learning models. The ability of the models to discriminate protracted recovery was compared to a human-
driven model according to the area under the receiver operating characteristic curve (AUC).
Results: For 293 males (mean age 14.0 years) and 362 females (mean age 13.7 years), the median (interquar-
tile range) time to recover from an SRC was 26 (18−39) and 21 (14−31) days, respectively. Among 9
machine-learning models trained, the gradient boosting on decision-tree algorithms achieved the best per-
formance to predict recovery time and protracted recovery in males and females. The models’ performance
improved when VOMS data were used in conjunction with the King-Devick Test and C3 Logix Trails Test
data. For males and females, the AUC was 0.84 and 0.78 versus 0.74 and 0.73, respectively, for statistical mod-
els for predicting protracted recovery.
Conclusions: Machine-learning models were able to manage the complexity of the vestibular-ocular motor
system data. These results demonstrate the clinical utility of machine-learning models to inform prognostic
evaluation for SRC recovery time and protracted recovery.
© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Recently, increased attention has been given to the prevention,
prognosis, treatment, and management of sport-related concussions
(SRCs) occurring during childhood and adolescence [1−4]. This inter-
est is in response to the growing body of evidence linking SRCs to
short- and long-term health outcomes, including behavioural, aca-
demic, neurocognitive, and social deficits [5−9] stemming from

persistent symptoms. Children and adolescents at high risk for persis-
tent symptoms after an SRC are currently not able to be identified at
the outset of the injury. This inability prevents the clinician from dis-
tinguishing between clinical and physiological recovery as well as
prescribing a more personalized rehabilitation protocol for a safe and
timely recovery. Despite growing interest in these areas, there are no
tools or instruments available to estimate SRC recovery time.

Estimating SRC recovery time would be helpful to the clinician in
several ways. First, the expected recovery time can be used to indi-
cate any outlying clinical recoveries (i.e., those that recover before/
after the estimated recovery time). It is important to identify individ-
uals who have clinically recovered before the estimated recovery
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time, which may be an indication of clinical recovery rather than
physiological recovery. There is evidence of athletes masking symp-
toms after an SRC to return to play because of the pressure they place
on themselves or pressure from friends, teammates, or coaches [10].
Releasing an athlete to return to school or sport before physiological
recovery may put the athlete at risk of subsequent injury, further
delaying recovery, and possibly leading to long-term health prob-
lems. Second, the clinician can use the expected recovery time to
develop personalized recovery protocols based on the expected
recovery time. As has been seen in other areas of medicine [11−13],
personalized treatment plans may be effective in improving patient
outcomes. Finally, an accurate estimation of recovery time benefits
the clinic and patient by eliminating unnecessary visits. Currently,
people with concussion are scheduled for follow-up visits at stan-
dardized intervals until clinical recovery. Because of the high variabil-
ity in SRC recovery time, this standardized approach may result in a
delayed return to play for individuals with expedited recovery and
unnecessary appointments for those with protracted or longer than
usual recovery. This protracted recovery is clinically defined as > 21
elapsed days from date of injury to date of medical clearance to
return to all activities.

However, estimating SRC recovery time remains a challenge. Sev-
eral factors contribute to recovery time, including injury-specific fac-
tors (injury severity, post-acute injury symptoms [e.g., loss of
consciousness]), pre-injury factors (concussion history, neurological
condition[s] history, etc.), and individual/patient-specific factors (age,
sex, neurodevelopmental and behavioral disorders, etc.). Female ath-
letes in particular report more total symptoms, demonstrate more
significant neurocognitive impairment, and report more symptoms
during clinical evaluations after an SRC than do males [14].

Disruptions to the vestibular and/or ocular-motor systems may
contribute to delayed SRC recovery [15−20]. The vestibular system is
a network of organs in the inner ear that provides information on
motion, position, balance, and spatial orientation [21]. This complex
and delicate system provides direction for compensatory movements
to maintain visual (vestibulo-ocular) and postural (vestibulospinal)
balance control. Therefore, disruptions to the vestibular system often
manifest as symptoms of dizziness, visual instability, and/or loss of
balance. In addition to vestibular system impairment, an SRC often
results in disruptions to the ocular-motor system. In fact, ocular-
motor dysfunction is present in many neurological disorders and has
been described as representing higher (dys)functions of the brain
[22,23]. These dysfunctions may manifest as blurred vision, diplopia,
impaired eye movement, difficulty reading, dizziness, headaches,
ocular pain, and disrupted concentration. The complex multi-dimen-
sional structure of the vestibular-ocular motor system may provide
the level of sensitivity needed to identify concussions that will
require longer recovery. However, from a clinical perspective, the
complexity of the vestibular-ocular motor system limits the clini-
cian’s ability to deduce an estimated recovery time. Therefore, there
is a critical need to identify tools that can overcome these complexi-
ties to produce meaningful results.

Machine learning (ML) has been proposed as an analytical tool
to overcome these complexities and has been used in other areas
of medicine [11,23], public health [24,25], and gene representa-
tion [26]. Walker and colleagues provided a proof-of-concept for
ML approaches to predict concussion recovery time in a pediatric
sample [27] and in other areas of sports injury [28]. The Walker
et al. study did not use vestibular-ocular motor system testing
data. To our knowledge, no study has used ML approaches to
deduce data from vestibular-ocular motor system testing, in con-
junction with other concussion evaluations, to predict SRC recov-
ery time. Therefore, we do not know whether there is any clinical
utility in ML algorithms of clinical concussion data for predicting
SRC recovery time and protracted recovery. This study aimed to
address this question.

We developed an ML framework to predict 1) SRC recovery time
(days) and 2) protracted recovery (yes/no). To contextualize the ML
model, we compared the results to traditional statistical models.
Although ML approaches are important and provide an understand-
ing of complex data not allowed by traditional, human-driven, statis-
tical modeling approaches, one must contextualize and compare
results from ML approaches with results from traditional approaches.
The organization of paper follows STROBE guidelines.

Methods

Setting and participants

This study used a retrospective case series design. Cases were
sampled from patients presenting to a pediatric specialty clinic in
Plano, TX, USA from October 2017 to March 2020. Data were col-
lected during clinical examinations occurring as part of the standard
of care for treating pediatric concussion. Study inclusion criteria were
age 8 to 18 years, participating in a sport at the time of injury, diag-
nosed with an SRC, and evaluated within 7 days after the initial date
of injury. Exclusion criteria, documented by medical history, included
any of the following: previous diagnosis of developmental delay,
diagnosis of a comorbid neck or spine injury, previous diagnosis of
congenital or acquired neurological defect not related to the concus-
sion injury, and inability to understand the premise of the study due
to language barriers. The research protocol was approved by the
Institutional Review Boards at the University of Texas Southwestern
Medical Center (UTSW) and the Committee for the Protection of
Human Subjects at the University of Texas Health Science Center at
Houston (UTHealth).

Measures

The vestibular-ocular motor system was assessed by using the
Vestibular Ocular Motor Screening (VOMS) measure [21], King-
Devick Test [29], and C3 Logix Trails Tests [30]. The tests were admin-
istered in the following order: 1) VOMS, 2) King-Devick Test, 3) C3
Logix Trails Tests, and are clinically independent (there is no sequen-
tial test administration based on prior test performance). The VOMS
was specifically designed to detect concussion injuries by identifying
the provocation of symptoms using a series of 5 tests (smooth pur-
suits, saccadic or rapid eye movements, near point convergence, ves-
tibular ocular reflex, visual motion sensitivity) that promote the
interaction of the vestibular and ocular motor systems. Before the
administration of the VOMS measure, the clinician asked the patient
to report his/her current severity (scale of 0 to 10) of the following
concussion-related symptoms: headache, dizziness, nausea, foggi-
ness. Then, after the clinician demonstrated the specific tasks for
each test, the patient performed the test and was asked to report any
provocation of symptoms occurring during or at the completion of
the task. Symptom severity during or at the completion of each test
was recorded by the clinician. Several summary estimates were gen-
erated from the VOMS measure. First, we computed the sum of the
symptom scores across all tests and the sum of the test scores across
all symptoms. Then, we computed the difference in test provoked
symptom scores from baseline. We also computed the sums of the
difference scores from baseline.. Each of the symptom scores and
summary scores were reported and analyzed as discrete variables.
Additionally, 3 binary (yes, no) variables were created to indicate a
positive screen for delayed recovery by using the threshold of an
increase in 2 points in symptom severity score from baseline for 1) ≥
1 test, 2) ≥ 2 tests, and 3) ≥ 3 tests as informed by the VOMS scoring
criteria proposed by Mucha et al. [21].

The King-Devick Test is a quick number-naming measure histori-
cally used as a sideline SRC assessment tool. For the current study,
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the total time and errors were recorded by using the same number-
naming cards from the standard sideline administration [29].

The Trails A and B subtests from the C3 Logix system are a tablet-
administered assessment of visual processing speed. Trails A and B
tests require the test taker to draw a line between points with their
fingers that are either a sequence of numbers or numbers and letters
in an ascending progression. Both the sum and means of Trails A and
B tests as well as the difference between scores for Trails A and B tests
were calculated and used as performance measures [30].

The primary outcomes of interest were recovery time (days) and
protracted recovery (yes/no). Recovery time was defined as the num-
ber of days from the patient-reported date of injury to the date of
recovery, as determined by medical clearance to resume normal aca-
demic and athletic activities. Medical clearance was provided at the
final clinic visit, which was scheduled when the patient experienced
an asymptomatic response to unrestricted physical and cognitive
activities for at least 3 consecutive days. Time in days was analyzed
as a discrete variable. Additionally, a binary variable (yes/no) repre-
senting the presence of protracted recovery was included as an out-
come and defined as recovery time > 21 days. A multi-class variable
relating to recovery time in weeks was also included to assist the cli-
nician with scheduling follow-up appointments. Five classification
categories (i.e., 0−2 weeks, 2−3 weeks, 3−4 weeks, 4−5 weeks, and
> 5 weeks) were defined for the multi-class variable.

Other participant characteristics (age [discrete, years] and sex)
and risk factors for delayed recovery were collected as part of the
patient’s initial clinic visit. Participants were asked to report the sport
they were participating in when the concussion occurred, loss of con-
sciousness at the time of the injury, concussion history, migraine his-
tory, and acute presence of vision problems and amnesia. The sport
the participant was participating in at the time of injury was classi-
fied as non-contact, contact, or collision, based on other previously
defined criteria [31]. All other potential risk factors for protracted
recovery (medical history of psychological problems, concussion, or
migraine, acute symptoms after concussion including dizziness,
headache, vision problems, amnesia, and loss of consciousness) were
recorded and analyzed as binary (yes/no) variables.

All variables included in the modeling are defined and detailed in
Appendix Table A.

Data analysis

All variables were assessed for missing data and normality as
appropriate. The analytic sample did not contain missing data for any
numeric variables. Categorical data with missing data were analyzed
as an additional “missing” category. Data were evaluated by Student
t-test, Kruskal-Wallis test, and chi-square test for heterogeneity to
determine any statistical differences in mean, median, and propor-
tion estimates, respectively.

Calculation

ML modeling

Because of the nature of the data and impact of categorical varia-
bles on ML models, we used CatBoost-based [32] modeling to predict
1) SRC recovery time (days) and 2) protracted recovery by using pre-
morbid and post-acute injury risk factors and VOMS, King-Devick
Test and C3 Logix Trails Test results as predictive variables. All varia-
bles were included as potential predictive variables in model training
because the CatBoost algorithm automatically selects significant vari-
ables whose contribution is evaluated by the SHapley Additive
exPlanations (SHAP) [33] value. The dataset was split into propor-
tions of 65%, 15%, and 20% for training, validation, and testing, respec-
tively. The maximum number of trees selected was 4000 to avoid
overfitting based on the size of the dataset and number of predictive

variables. For females, the depth of model selected was 8 because a
relatively deeper structure was required to learn complicated vari-
able information as compared with a depth of 6 for males. Because of
the non-linearity and complexity of our models and to provide
insight into the models’ predictions, SHAP values were used to esti-
mate the average marginal contributions of each variable across all
permutations and to quantify variable importance.

We compared the performance of the CatBoost model with other
commonly used models, including decision tree [34], elastic net [35],
random forest [36], XGBoost [37], and TabNet [38]. The performance
of the models was compared by prediction error using the root mean
square error (RMSE). All results were generated by 5-folder cross-val-
idation. The ability of the models to discriminate individuals who
would have protracted recovery from normal recovery was further
evaluated by using the area under receiver operating characteristic
(ROC) curve (AUC).

Statistical modeling

The utility of the ML algorithms was evaluated against a human-
driven model building approach (zero-truncated negative binomial
regression models). Zero-truncated negative binomial regression
models were used to account for 1) the data structure of the outcome
(number of days to recover) inherently lacking zeros (i.e., a patient
will take at least 1 day to recover from the concussion, therefore
requiring a zero-truncated model) and 2) dispersion of the count
data (over-dispersed) requiring a negative binomial. First, the data-
sets for each sex were randomly split into training (75%) and valida-
tion (25%) datasets. With the training dataset, a forward and
backward stepwise approach was used with variable p-value inclu-
sion threshold set at 0.25 at step one (bivariable models) and 0.05 at
step two to establish the main-effects multivariable model. Each
main-effect model variable was tested for interaction with age, given
the possibility of a certain level of cognitive development required to
understand or answer the questions accurately. Tests for collinearity
between variables were performed along with post-hoc analyses of
model fit and tests for the appropriateness of the zero-truncated neg-
ative binomial model selection. The prediction model was then
applied to the validation dataset, and specificity, accuracy and ROC
curves were used to determine the model’s ability to discriminate
individuals who would have a protracted recovery from those who
would have a normal recovery. ROC curves were also generated to
compare the discriminatory abilities of the ML and human-driven
models.

Results

Sample characteristics

A total of 1109 patients presented to the study site between Octo-
ber 2017 and March 2020; 930 met the inclusion criteria (age 8
−18 years, participating in a sport at the time of injury, diagnosed
with an SRC and evaluated within 7 days after the initial date of
injury). A further 275 were excluded based on the exclusion criteria
(diagnosed developmental delay, comorbid neck or spine injuries, or
congenital or acquired neurological defect or injury). The analytic
sample was 655 (362 males and 293 females). Table 1 details partici-
pant characteristics. The mean (SD) age was 13.7 (2.4) and 14.0 (2.2)
years, respectively. Males most frequently participated in a collision
sport at the time of injury (n = 236, 65%), and females most frequently
participated in a contact sport (n = 208, 71%). Acute post-injury risk
factors for protracted recovery with the highest prevalence were
headache, dizziness, and vision problems for both males and females.
Appendix Fig. A depicts the distribution and descriptive statistics of
recovery time. Males and females significantly differed in recovery
time (median 21 days [14−31] and 26 days [18−39], p<0.001).
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Recovery time prediction

Table 2A compares CatBoost, XGBoost, Elastic Net, TabNet, and
Extra Trees Regressor in predicting SRC recovery time for males and
females [39]. Fine-tuned CatBoost prediction outperformed other ML
models with regard to the RMSE. This finding was consistent with
and without the King-Devick Test and C3 Logix Trails Tests.

Protracted recovery classification

Appendix Fig. B presents the ROC curves for discriminating pro-
tracted recovery (recovery time > 21 days) and normal recovery. For
males and females, the AUC was 0.84 and 0.78, respectively. To quan-
tify the contribution of the King-Devick Test and C3 Logix Trails Test
variables to predicting protracted recovery and to illustrate the
importance of comprehensive tests for patients, we ran post-hoc tests
of the CatBoost model on the same dataset without King-Devick Test
and C3 Logix Trails Test variables. The AUCs were 0.78 and 0.76,
respectively.

SHAP summary plots of the prediction models used for classifica-
tion of protracted recovery are shown in Fig. 1. The most significant
variable for males was the VOMS near point convergence test differ-
ence score−dizziness (con_ddiff), which is the difference between
the dizziness symptom score at baseline and after completing the
near point convergence test. Additionally, the change in VOMS sac-
cades-horizontal score (sach1), visual motion sensitivity test differ-
ence score−headache (vms_hadiff), and vestibular ocular reflex-
vertical test difference score−headache (vorv_hadiff) also played cru-
cial roles for males. The most significant variable for females was the
near point convergence test difference score−dizziness (con_hadiff).
Smooth pursuits test difference score−headache (pur_hadiff), King-
Devick Test cards 2 error (kdc2_e), and saccades-horizontal score
(sach1) also highly contributed to the classification accuracy for
females. Although these variables most significantly contributed to
the models, 11 total variables each for males and females showed rel-
evance to the model output (Fig. 1). For variable details, please refer
to the variable codebook (Appendix Table A).

We also compared our proposed ML model for predicting pro-
tracted recovery with several other commonly used methods, includ-
ing boosting methods, deep learning methods, and linear models.
Table 2B compares the models, illustrating that fine-tuned CatBoost
outperformed other ML models for protracted recovery prediction.

Table 1
Descriptive statistics of patients undergoing sport-related concussion recovery
treatment in a pediatric clinic setting, 2017−2020.

Characteristics Male, 362 (55) Female, 293 (45) p-value

Recovery time (days), median
(IQR)

21 (14−31) 26 (18−39) <0.001

Age (years), Mean (STD) 13.7 (2.4) 14.0 (2.2) 0.089
8−13 163 (45) 104 (35)
14−18 199 (55) 189 (64)

Sport <0.001
Non-contact 5 (1) 27 (9)
Contact 88 (24) 208 (71)
Collision 236 (66) 11 (4)
Missing 33 (9) 47 (16)

Presence of risk factors
History of psychological
problem

2 (1) 8 (3) 0.034

History of concussions 34 (9) 38 (13) 0.099
History of migraines 17 (5) 17 (6) 0.727
Acute dizziness 104 (29) 88 (30) 0.425
Acute headache 118 (33) 120 (41) 0.025
Acute vision problems 76 (21) 55 (19) 0.061
Acute amnesia 41 (11) 26 (9) 0.140
Loss of consciousness 15 (4) 9 (3) 0.421

Data are n (%) unless indicated.
IQR, interquartile range; STD, Standard Deviation.

Table 2
(A) Comparison with other machine-learning models for predicting sport-related concussion recovery time stratified by sex based on the
root mean square error (RMSE).

Method RMSE

Males Females

Mean Baseline Regression Pipeline 14.43 13.09
Extra Trees Regressor w/ Imputer 14.73 12.74
Elastic Net Regressor w/ Imputer 16.29 12.44
XGBoost Regressor 15.77 13.43
Random Forest 14.18 12.51
Linear Regression w/ Imputer 15.97 14.47
TabNet Regressor 14.62 13.93
CatBoost without KD and C3 variables 13.80 12.08
CatBoost with KD and C3 variables 12.84 10.83

(B). Comparison with other machine-learning models for predicting protracted sport-related concussion recovery stratified by sex
based on AUC .

AUC

Method Males Females

Mode Baseline Binary Classification 0.50 0.50
Extra Trees Classifier w/ Imputer 0.70 0.59
Elastic Net Classifier w/ Imputer 0.50 0.50
XGBoost 0.64 0.56
Random Forest 0.70 0.62
Logistic Regression Classifier 0.56 0.55
TabNet 0.74 0.70
Zero-truncated models 0.70 0.67
CatBoost without KD and C3 variables 0.78 0.72
CatBoost 0.84 0.78

KD, King-Devick Test; C3, C3 Logix Trails Tests.
AUC, area under the receiver operating characteristic curve; KD, King-Devick Test; C3, C3 Logix Trails Tests.
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For males, the prediction accuracy and precision of CatBoost models
were 75% and 83% and 71% and 76% for females.

Multi-classification
To assist the clinician with scheduling follow-up appointments,

we conducted multi-classification of recovery time in weeks. We
manually split recovery time into 5 classes, 0−2 weeks, 2−3 weeks, 3
−4 weeks, 4−5 weeks, > 5 weeks. A summary of the distribution of
patient recovery time (weeks) classification is in Appendix Table B.
Appendix Fig. C shows the ROC curve and corresponding AUC values
for each recovery time class. For 0−2 weeks, 3−4 weeks, 4−5 weeks,
and > 5 weeks, the model performed adequately, whereas for 2−3
weeks, the model performed inadequately because it was under-
mined by noisy input features.

Statistical analysis for predicting recovery time and protracted recovery

The human driven zero-truncated models predicting recovery
time are in Appendix Table C. The effect of each mutually adjusted
predictor on recovery time can be estimated by taking the exponent
of the beta coefficient. For example, among males, the incidence rate
ratio for the number of concussions previously experienced (hxconc-
quat) can be interpreted as follows: for each additional concussion
experienced previously, the recovery time (days) rate would be
expected to increase by a factor of 1.19 days (p<0.001), holding all
other factors constant. Convergence +1 score change on any symp-
toms (con1), vestibular ocular reflex horizontal test fogginess symp-
tom score (vorh_f) and convergence test dizziness symptom score
(con_d) most significantly aided in prediction in the traditional statis-
tical model for males, whereas King-Devick Test cards 1 error
(kdc1_e), visual motion sensitivity test fogginess symptom score

(vms_f) and visual motion sensitivity+1 score change on any symp-
toms (vms1) significantly aided in prediction for females (p<0.001).

Furthermore, the ability of the traditional models to discriminate
protracted recovery from normal recovery was evaluated by the ROC
curve in the validation dataset. The traditional model demonstrated
an AUC of 0.74 for males and 0.73 for females (Appendix Fig. B),
whereas the CatBoost models produced an AUC of 0.84 for males and
0.78 for females (Table 2B).

Discussion

As compared with the human-driven statistical model, the Cat-
Boost-based ML model showed higher predictive and discriminative
ability, which indicates that the CatBoost method was more accurate
in identifying both males and females that would experience a nor-
mal or protracted recovery after an SRC. Additionally, the CatBoost
method produced a more parsimonious model than the human-
driven model for both females and males, with 11 features versus 25
for females, and 11 versus 27 for males [40]. Furthermore, we evalu-
ated the ability of our ML algorithm to predict week-level recovery
times to demonstrate its potential utility in optimizing patient fol-
low-up appointment scheduling. Among the ML algorithms, the Cat-
Boost-based model outperformed other related models. The CatBoost
algorithm was able to overcome limitations present in other ML
methods that use boosting tree and numeric inputs, which are lim-
ited because of their assumption on continuous variable space and
the number of patients involved in the dataset, thereby undermining
the robustness of the algorithms. Other methods, based on an atten-
tion mechanism and neural networks, are limited by high correlation
among predictive variables that conflict with the orthogonality
assumption. Comparatively, the CatBoost method overcomes both
these limitations by using ordered Boosting and random

Fig. 1. SHapley Additive exPlanations (SHAP) summary plots of the prediction models used for classifying protracted recovery from a sports-related concussion by sex.
con_ddiff, difference from baseline on dizziness symptom scores during Vestibular Ocular Motor Screening (VOMS) convergence test; con_hadiff, difference from baseline on

headache symptom scores during VOMS convergence test; con_t1, VOMS convergence test time 1; hxheadache, history of headaches; hxmig, history of migraines; kdc2_e, King-
Devick card 2 errors; kdc1_t, King-Devick card 1 time; kdc2_t, King-Devick card 2 time; loc, loss of consciousness; psyc, history of psychological problems; pur_fdiff, difference from
baseline on fogginess symptom scores during VOMS smooth pursuits test; pur_hadiff, difference in headache symptom scores on VOMS smooth pursuits test; sach1, sum of all base-
line symptom scores on VOMS horizontal saccades test scores; sach_ha, headache symptom score during VOMS horizontal saccades test; sach_n, nausea symptom score on VOMS
horizontal saccades test; vms_hadiff, difference from baseline on headache symptom score during VOMS visual motion sensitivity test; vorh_n, nausea symptom score during
VOMS horizontal vestibular ocular reflex test; vorv_ddiff, difference from baseline on dizziness symptom score during VOMS vertical vestibular ocular reflex test; vorv_hadiff, differ-
ence from baseline on headache symptom score during VOMS vertical vestibular ocular reflex test.

Notes: The summary plot combines feature importance with feature effects. The variables are ordered according to the corresponding variable importance, and each point on
the plot is the Shapley value for a variable and an instance. The color represents the value of the variable from low to high. Left: SHAP summary plot for males, which illustrates the
significance of con-ddiff, sach1, and vms_hadiff. Right: SHAP summary plot for females, which illustrates the significance of con-hadiff, pur_hadiff, and kdc2_e. For variable details,
please refer to the variable codebook (Appendix Table A).
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permutation. The CatBoost method does not feature issues related to
overfitting and can handle categorical data input while remaining
comparatively efficient with several variables in the optimal model.

Few other studies have evaluated the utility of ML to predict
SRC recovery, which was our primary aim; however, these find-
ings generally support other analyses of the association between
vestibular-ocular motor evaluation and concussion recovery. Pre-
viously, we [18] found that VOMS test domains and VOMS test
thresholds were associated (p<0.05) with SRC recovery time in
days, but the VOMS test performed poorly (AUC=0.66 for males;
0.56 for females) as a tool to discriminate participants who would
recover normally and those who would have a delayed recovery.
We concluded that despite the VOMS association with recovery
time, as has also been found by others [15,17,19,20], the VOMS
does not appear to have sufficient ability to identify delayed SRC
recovery in a pediatric sample as a stand-alone prognostic tool.
Hence, this was the catalyst for the current study, which comple-
mented the VOMS testing of the vestibular-ocular motor system
with the King Devick test of ocular motor speed and C3 Trails
Tests of cognitive functioning.

Study limitation

The first limitation is that ML methods are inherently large-
sample procedures. Although the analytic sample (n = 655) in the
current study was sufficiently powered to produce reliable esti-
mates using both the ML and human-driven statistical methods, a
larger analytic sample would better account for individual differ-
ences and random error, thereby further refining the reliability
and predictive ability of the models. However, ML methods hold
assumptions, including orthogonality, normality, or independence
among predictive variables, which could be a challenge when col-
lecting more data. Furthermore, unmeasured factors may be con-
tributing to recovery time, such as behaviours occurring during
the recovery phase (levels of physical activity, sleep, cognitive
strain, and vestibular-ocular motor system rehabilitation, etc.). Of
note, this study was designed to predict SRC recovery time and
protracted recovery based on pre-morbid and post-acute injury
factors alone. As such, given the strong influence of these other
factors on recovery time, the predictive ability of this model may
be limited. Further research is necessary to validate the predictive
model provided in settings outside of the original data collection
site. The predictive model sample was collected at a specialized
concussion center and results may differ when compared to those
from emergency medicine and primary care settings. Finally,
multi-classification of the number of weeks for SRC recovery is
limited by the number of patients involved in the dataset. In the
future, better prediction accuracy in multi-classification is
expected to be achieved with the availability of more data.

Conclusions

Clarification around clinical recovery is important for medical pro-
viders managing SRC in pediatric patients. Prediction models may
benefit providers by informing SRC recovery time thereby allowing
for specialized education and specific therapeutic interventions, and
identifying those who may benefit from referrals to additional spe-
cialty medical providers. Accurate prognosis upon the initial visit is
also important in setting realistic expectations for patients and may
contribute to patient compliance with prescribed treatment plans.
This is a promising tool to support clinicians and patients in predict-
ing SRC recovery by eliminating unnecessary follow-up appoint-
ments in patients with protracted recovery.
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Appendix

Fig. A, Fig. B and Fig. C.

Fig. A. Distribution and descriptive statistics of days to recover from a sports-related concussion by sex among pediatric patients in our dataset.
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Fig. B. Area under the receiver operating characteristic curve for males and females with or without King-Devick Test and C3 Logix Trails Test variables using CatBoost and a
human-driven statistical model. The area under the ROC curve increases in males and females from use of human-driven statistical model to use of machine-learning model Cat-
Boost informed by VOMS variables and improves again when King-Devick Test and C3 Logix Trails Test variables are used in conjunction with VOMS variables. ROC, receiver operat-
ing characteristic; VOMS, Vestibular Ocular Motor Screening.
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