3,515 research outputs found

    I Cannot Celebrate

    Get PDF

    Windchill

    Get PDF

    Stardust

    Get PDF

    Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    Get PDF
    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings

    A Fibrational Framework for Substructural and Modal Logics

    Get PDF
    We define a general framework that abstracts the common features of many intuitionistic substructural and modal logics / type theories. The framework is a sequent calculus / normal-form type theory parametrized by a mode theory, which is used to describe the structure of contexts and the structural properties they obey. In this sequent calculus, the context itself obeys standard structural properties, while a term, drawn from the mode theory, constrains how the context can be used. Product types, implications, and modalities are defined as instances of two general connectives, one positive and one negative, that manipulate these terms. Specific mode theories can express a range of substructural and modal connectives, including non-associative, ordered, linear, affine, relevant, and cartesian products and implications; monoidal and non-monoidal functors, (co)monads and adjunctions; n-linear variables; and bunched implications. We prove cut (and identity) admissibility independently of the mode theory, obtaining it for many different logics at once. Further, we give a general equational theory on derivations / terms that, in addition to the usual beta/eta-rules, characterizes when two derivations differ only by the placement of structural rules. Additionally, we give an equivalent semantic presentation of these ideas, in which a mode theory corresponds to a 2-dimensional cartesian multicategory, the framework corresponds to another such multicategory with a functor to the mode theory, and the logical connectives make this into a bifibration. Finally, we show how the framework can be used both to encode existing existing logics / type theories and to design new ones

    Investigation into the Influence of Double Bagging Processes on Co-cured Scarf Repairs

    Get PDF
    The prevalence of non-monolithic materials such as carbon fibre reinforced polymers (CFRP) in aerospace has introduced many new complexities to the materials industry. Sustainment and through life costs of military vehicles are often substantially greater than acquisition costs, and as such, efforts to improve reliability and minimise costs are significant. Regarding composite structures, scarf repairs are often used to restore strength to a damaged component, with a shifting focus to out-of-autoclave processes to reduce cost. The aim of this project was to identify the effects of processing techniques through the application of novel and standard assessment techniques. Through the application of novel techniques, including pressure mapping and cure kinetics modelling, relationships surrounding bond quality and quality control were established. It was observed throughout this project that comparable strength and quality for DVB co-cured specimens with improved quality control was achieved when a caul plate was utilised. With consistent cohesive substrate failure (CSF) observed, 0.03 +/- 0.038 % average bond-line porosity, and an average tensile strength of 401 +/- 28 MPa, the quality and consistency of these specimens was significantly greater than other co-cured groups. It was also observed that the DVB cure cycle, when applied to the hard patch approach, resulted in decreased average tensile strength, indicative of an improper cure cycle. Cure kinetics modelling applied to the adhesive saw that the DVB process delayed the onset point by approximately 5oC and 30 minutes. Additional work is required surrounding the cure kinetics for the prepreg system, in order to establish an optimized theoretical cure process. Additionally, further mechanical testing, porosity evaluation, and dielectric cure sensing will offer additional insights into the DVB co-curing process, allowing for standardized repair procedures to be developed
    corecore