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Abstract
We define a general framework that abstracts the common features of many intuitionistic sub-
structural and modal logics / type theories. The framework is a sequent calculus / normal-form
type theory parametrized by a mode theory, which is used to describe the structure of contexts
and the structural properties they obey. In this sequent calculus, the context itself obeys standard
structural properties, while a term, drawn from the mode theory, constrains how the context can
be used. Product types, implications, and modalities are defined as instances of two general con-
nectives, one positive and one negative, that manipulate these terms. Specific mode theories can
express a range of substructural and modal connectives, including non-associative, ordered, linear,
affine, relevant, and cartesian products and implications; monoidal and non-monoidal functors,
(co)monads and adjunctions; n-linear variables; and bunched implications. We prove cut (and
identity) admissibility independently of the mode theory, obtaining it for many different logics
at once. Further, we give a general equational theory on derivations / terms that, in addition to
the usual βη-rules, characterizes when two derivations differ only by the placement of structural
rules. Additionally, we give an equivalent semantic presentation of these ideas, in which a mode
theory corresponds to a 2-dimensional cartesian multicategory, the framework corresponds to
another such multicategory with a functor to the mode theory, and the logical connectives make
this into a bifibration. Finally, we show how the framework can be used both to encode existing
existing logics / type theories and to design new ones.
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1 Introduction

In ordinary intuitionistic logic or λ-calculus, assumptions or variables can go unused (weak-
ening), be used in any order (exchange), be used more than once (contraction), and be used
in any position in a term. Substructural logics, such as linear logic, ordered logic, relevant
logic, and affine logic, omit some of these structural properties of weakening, exchange, and
contraction, while modal logics place restrictions on where variables may be used – e.g. a
formula � C can only be proved using assumptions of �A, while an assumption of ♦A
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25:2 A Fibrational Framework for Substructural and Modal Logics

can only be used when the conclusion is ♦ C. Substructural and modal logics have had
many applications to both functional and logic programming, modeling concepts such state,
staging, distribution, and concurrency. They are also used as internal languages of categories,
where one uses an appropriate logical language to do constructions “inside” a particular
mathematical setting, which often results in shorter statements than working “externally”.
For example, to define a function externally in domains, one must first define the underlying
set-theoretic function, and then prove that it is continuous; when using untyped λ-calculus
as an internal language of domains, one writes what looks like only the function part, and
continuity follows from a general theorem about the language itself. Substructural logics
extend this idea to various forms of monoidal categories, while modal logics describe monads
and comonads. Recent work [30, 31] proposed using modal operators to add a notion of
cohesion to homotopy type theory/univalent foundations [33, 32]. Without going into the
precise details, the idea is to add a triple S a [ a ] of type operators, where for example ]
and S are monads (like a modal possibility ♦ or ©), [ is a comonad (like a modal necessity
�), and there is an adjunction structure between them ([A→ B is the same as A→ ]B).
This raised the question of how to best add modalities with these properties to type theory.

Because other similar applications rely on functors with different properties, we would
like general tools for going from a semantic situation of interest to a well-behaved logic/type
theory for it – e.g. one with cut admissibility / normalization and identity admissibility /
η-expansion. In previous work [15], we considered the special case of a single-assumption
logic, building most directly on adjoint logic [5, 6, 26]. Here we extend this previous work to
the multi-assumption case. The resulting framework is quite general and covers many existing
intuitionistic substructural and modal connectives: non-associative, ordered, linear, affine,
relevant, and cartesian products and implications; combinations thereof such as bunched
logic [21] and resource separation [3]; n-linear variables [24, 1, 17]; the comonadic � and
linear exponential ! and subexponentials [20, 10]; monadic ♦ and © modalities; and adjoint
logic F and G [5, 6, 26], including the single-assumption 2-categorical version from our
previous work [15]. A central syntactic result is that cut and identity are admissible for our
framework itself, and this implies cut admissibility for any logic that can be described in
the framework, including all of the above, as well as any new logics that one designs using
it. When we view the derivations in the framework as terms in a type theory, this gives
an immediate normalization (and η-expansion) result. Our focus here is on propositional,
single-conclusioned substructural and modal logics, leaving extensions to quantifiers, multi-
conclusioned logics, and dependent types to future work.

At a high level, the framework makes use of the fact that all of the above logics / type
theories are a restriction on how variables can be used in ordinary structural/cartesian
proofs. We express these restrictions using a first layer, which is a simple type theory for
what we will call modes and context descriptors. The modes are just a collection of base
types, which we write as p, q, r, while a context descriptor α is a first-order term built from
variables and function symbols. The next layer is the main logic. Each proposition/type
is assigned a mode, and the basic sequent is x1 : A1, . . . , xn : An `α C, where if Ai has
mode pi, and C has mode q, then x1 : p1, . . . , xn : pn ` α : q. We use a sequent calculus to
concisely describe cut-free derivations/normal forms, but everything can be translated to
natural deduction. We write Γ for x1 : A1, . . . , xn : An, and Γ itself behaves like an ordinary
structural/cartesian context, while the substructural and modal aspects are enforced by the
term α, which constrains how the resources from Γ may be used. For example, in linear
logic/ordered logic/BI, the context is usually taken to be a multiset/list/tree. We represent
this by a pair of an ordinary structural context Γ, together with a term α that describes
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the multiset or list or tree structure, labeled with variables from the ordinary context at the
leaves. We pronounce Γ `α A as “Γ proves A {along,over,using} α”.

For example, if we have a mode n, together with a context descriptor constant x : n, y :
n ` x� y : n, then an example sequent x : A, y : B, z : C,w : D `(y�x)�z E should be read
as saying that we must prove E using the resources y and x and z (but not w) according to
the particular tree structure (y � x)� z. If we say nothing else, the framework will treat �
as describing a non-associative, linear, ordered context [14]: if we have a product-like type
A�B internalizing this context operation,1 then we will not be able to prove associativity
((A�B)�C a` A�(B�C)) or exchange (A�B ` B�A) etc. To get from this basic structure
to a linear or affine or relevant or cartesian system, we provide a way to add structural
properties governing the context descriptor term α. We analyze structural properties as
equations, or more generally directed transformations, on such terms. For example, to specify
linear logic, we will add a unit element 1 : n together with equations making (�, 1) into a
commutative monoid (x� (y� z) = (x� y)� z and x� 1 = x = 1� x and x� y = y� x) so
that the context descriptors ignore associativity and order. To get BI, we add an additional
commutative monoid (×,>) (with weakening and contraction, as discussed below), so that
a BI context tree (x : A, y : B); (z : C,w : D) can be represented by the ordinary context
x : A, y : B, z : C,w : D with the term (x � y) × (z � w) describing the tree. Because the
context descriptors are themselves ordinary structural/cartesian terms, the same variable can
occur more than once or not at all. A descriptor such as x� x captures the idea that we can
use the same variable x twice, expressing n-linear types. Thus, we can express contraction
for a particular context descriptor � as a transformation x ⇒ x � x (one use of x allows
two). Weakening, on the other hand, is represented by a transformation x ⇒ 1, which is
oriented to allow throwing away an allowed use of x, but not creating an allowed use from
nothing. We refer to these as structural transformations, to evoke their use in representing
the structural properties of object logics that are embedded in our framework. The main
sequent Γ `α A respects the specified structural properties in the sense that when α = β, we
regard Γ `α A and Γ `β A as the same sequent (so a derivation of one is a derivation of the
other), while when α⇒ β, there will be an operation that takes a derivation of Γ `β A to a
derivation of Γ `α A – i.e. uses of transformations are explicitly marked in the term.

Modal logics will generally involve a mode theory with more than one mode. For example,
a context descriptor x : c ` f(x) : l will generate an adjoint pair of functors between the two
modes, as in the adjoint syntax for linear logic’s ! [6] or other modal operators [26]. Using
this, a context descriptor f(x)� y expresses permission to use x in a cartesian way and y in
a linear way. Structural transformations are used to describe how these modal operators
interact with each other and with the products, and for some systems [15] it is important
that there can be more than one transformation between a given pair of context descriptors.

A guiding principle of the framework is a meta-level notion of structurality over structural-
ity. For example, we always have weakening over weakening: if Γ `α A then Γ, y : B `α A,
where α itself is weakened with y. This does not prevent encodings of relevant logics: though
we might weaken a derivation of Γ `x1�...�xn A (“use x1 through xn”) to a derivation
of Γ, y : B `x1�...�xn A, the (weakened) context descriptor does not allow the use of y.
Similarly, we have exchange over exchange and contraction over contraction. The identity-
over-identity principle says that we should be able to prove A using exactly an assumption
x : A (Γ, x : A `x A). The cut principle says that from Γ, x : A `β B and Γ `α A we

1 We overload binary operations to refer both to context descriptors and propositional connectives, relying
on metavariables (α1 � α2 vs. A1 �A2) to distinguish them.
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get Γ `β[α/x] B – the context descriptor for the result of the cut is the substitution of the
context descriptor used to prove A into the one used to prove B. For example, together with
weakening-over-weakening, this captures the usual cut principle of linear logic, which says
that cutting Γ, x : A ` B and ∆ ` A yields Γ,∆ ` B: if Γ binds x1, . . . , xn and ∆ binds
y1, . . . , yn, then we will represent the two derivations to be cut together by sequents with
β = x1� . . .�xn�x and α = y1� . . .�yn, so β[α/x] = x1� . . .�xn�y1� . . .�yn correctly
deletes x and replaces it with the variables from ∆. In more subtle situations such as BI,
the substitution will insert the resources used to prove the cut formula in the correct place
in the tree. Our cut algorithm follows cut admissibility for structural (cartesian) intuition-
istic logic [22], and applies the same cut reductions to all mode theories. In substructural
situations, certain portions of this general algorithm are unnecessary, but not harmful. For
example, in a setting without contraction, our algorithm will recursively cut into all premises
of a rule, even though the variable can only occur in one premise – but the extra recursive
cuts for variables that do not occur will leave the derivation unchanged, as desired.

The framework has two main logical connectives / type constructors. The first, Fα(∆),
generalizes the left-adjoint F of adjoint logic and the multiplicative products (e.g. ⊗ of linear
logic). The second, Ux.α(∆ | A), generalizes the right-adjoint G/U of adjoint logic and
implication (e.g. A( B in linear logic). Here ∆ is a context of assumptions xi : Ai, and
trivializing the context descriptors (i.e. adding an equation α = β for all α and β) degenerates
Fα(∆) into the ordinary intuitionistic product A1 × . . . × An, while Ux.α(∆ | A) becomes
A1 → . . .→ An → A. As one would expect, F is left-invertible and U is right-invertible. In
linear logic terms, our F and U cover both the multiplicatives and exponentials; additives can
be defined separately by the usual rules. Moreover, though F and U form an adjoint pair,
the subset of derivations that use either Fα or Uα but not both (for a particular α) describe
constructions on functors that do not have an adjoint. We discuss many examples of logical
adequacy theorems, showing that a sequent can be proved in a standard sequent calculus for
a logic iff its embedding using these connectives can be proved in the framework.

Being a very general theory, our framework treats the object-logic structural properties in
a general but naïve way, allowing an arbitrary structural transformation to be applied at the
non-invertible rules for F and U and at the leaves of a derivation. For specific embedded logics,
there is often a more refined discipline that suffices – e.g. for cartesian logic, always contract
all assumptions in all premises, and only weaken at the leaves. We view our framework as a
tool for bridging the gap between an intended semantic situation (in the cohesion example
mentioned, “a comonad and a monad which are themselves adjoint”) and a proof theory: the
framework gives some proof theory for the semantics, and the placement of structural rules
can then be optimized purely in syntax. To support this mode of use, we give an equational
theory on derivations/terms that identifies different placements of the same structural rules.
This can be used to prove correctness of such optimizations not just at the level of provability,
but also identity of derivations – which matters for our intended applications to internal
languages. We discuss some preliminary work on equational adequacy, which extends the
logical correspondence to isomorphisms of definitional-equality-classes of derivations.

Semantically, the logic corresponds to a functor between 2-dimensional cartesian mul-
ticategories which is a fibration in various senses. Multicategories are a generalization of
categories which allow more than one object in the domain of morphisms, and cartesianness
means that the multiple domain objects are treated structurally. The 2-dimensionality
supplies a notion of morphism between (multi)morphisms. A mode theory specifying context
descriptors and structural properties is analyzed as a cartesian 2-multicategory, with the
descriptors as 1-cells and the structural properties as 2-cells. The functor relates the sequent
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judgement to the mode theory, specifying the mode of each proposition and the context
descriptor of a sequent. The fibration conditions (similar to [12, 13]) give respect for the
structural transformations and the presence of F and U types. We prove that the sequent
calculus and the equational theory are sound and complete for this semantics: the syntax can
be interpreted in any bifibration, and itself determines one. This semantics shows that an
interesting class of type theories can be identified with a class of more mathematical objects,
fibrations of cartesian 2-multicategories, thus providing some progress towards characterizing
substructural and modal type theories in mathematical terms.

In Section 2, we present the syntax of the framework. In Section 3, we discuss how
a number of logics are represented. In Section 4, we give the βη-equational theory on
derivations. In Section 5, we discuss the framework’s categorical semantics. Proofs (of cut
and identity admissibility, soundness and completeness of the semantics, and adequacy of
encodings) and additional examples (subexponentials, modal S4 �, and strong/�-strong
monads) are available in an extended version of this paper [16].

2 Sequent Calculus

2.1 Mode Theories
The first layer of our framework is a type theory whose types we will call modes, and
whose terms we will call context descriptors or mode morphisms. To a first approximation,
context descriptors are multi-sorted first-order terms with equality and “less than or equal to”
relations. The only modes are atomic/base types p. A term is either a variable (bound in a
context ψ) or a typed n-ary constant (function symbol) c applied to terms of the appropriate
types. Two terms may be equal, written α ≡ β, or α may be stronger than β, written α⇒ β.

This is formalized in the notion of signature, or mode theory, defined in Figure 1. The
judgement Σ sig means that Σ is a well-formed signature. The top line says that a signature is
either empty, or a signature extended with a new mode declaration, or a signature extended
with a typed constant/function symbol, all of whose modes are declared previously in the
signature. The notation p1, . . . , pn → q is not itself a mode, but notation for declaring
a function symbol in the signature (it cannot occur on the right-hand side of a typing
judgement). For example, the type and term constructors for a monoid (�, 1) are represented
by a signature p mode,� : (p, p→ p), 1 : (→ p).

We elide the rules for the judgement `Σ ψ ctx, which simply says that each mode used in
the context of variable declarations ψ is declared in Σ. The judgement ψ `Σ α : p defines
well-typedness of context descriptor terms, which are either a variable declared in the context,
or a constant declared in the signature applied to arguments of the correct types. The
judgement ψ `Σ γ :ψ′ defines a substitution as a tuple of terms in the standard way. The
context ψ in these judgements enjoys the cartesian structural properties (associativity, unit,
weakening, exchange, contraction). Simultaneous substitution into terms and substitutions is
defined as usual (e.g. x[γ, α/x] := α and c( ~αi)[γ] := c( ~αi[γ])).

Returning to the top of the figure, the final two rules of the judgement Σ sig permit
two additional forms of signature declaration. The first of these extends a signature with
an equational axiom between two terms α and α′ that have the same mode p, in the same
context ψ, relative to the prior signature Σ. These equational axioms will be used to encode
reversible object language structural properties, such as associativity, commutativity, and
unit laws. For example, to specify the right unit law for the above monoid (�, 1), we add an
axiom (x� 1 ≡ x : (x : p)→ p) to the signature, which can be read as “x� 1 is equal to x
as a morphism from (x : p) to p”. The judgement ψ `Σ α ≡ α′ : p (omitted from the figure;
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25:6 A Fibrational Framework for Substructural and Modal Logics

Signatures Σ sig

· sig
Σ sig

(Σ, pmode) sig
Σ sig (p1 mode, . . . , pn mode, qmode) ∈ Σ

(Σ, c : p1, . . . , pn → q) sig

Σ sig `Σ ψ ctx pmode ∈ Σ ψ `Σ α : p ψ `Σ α′ : p
(Σ, (α ≡ α′ : ψ → p)) sig

Σ sig `Σ ψ ctx pmode ∈ Σ ψ `Σ α : p ψ `Σ α′ : p
(Σ, (α⇒ α′ : ψ → p)) sig

Context descriptors ψ `Σ α : p, where `Σ ψ ctx and pmode ∈ Σ

x : p ∈ ψ
ψ `Σ x : p

(c : p1, . . . , pn → q) ∈ Σ ψ `Σ αi : pi

ψ `Σ c(α1 , . . . , αn) : q

Mode Substitutions ψ `Σ γ :ψ′, where `Σ ψ ctx and `Σ ψ′ ctx

ψ `Σ · : ·
ψ `Σ γ :ψ′ ψ `Σ α : p
ψ `Σ γ, α/x :ψ′, x : p

Structural transformations ψ `Σ α⇒p α
′, where ψ `Σ α : p and ψ `Σ α′ : p

ψ `Σ α⇒p α

ψ `Σ α1 ⇒p α2 ψ `Σ α2 ⇒p α3

ψ `Σ α1 ⇒p α3

ψ, x : p, ψ′ `Σ β ⇒q β
′ ψ,ψ′ `Σ α⇒p α

′

ψ,ψ′ `Σ β[α/x]⇒q β
′[α′/x]

(α⇒ α′ : ψ → p) ∈ Σ
ψ `Σ α⇒p α

′

Figure 1 Syntax for mode theories.

the rules are the same as for ⇒ plus symmetry) is the least congruence closed under these
axioms.

The second of these extends a signature with a directed structural transformation axiom
between two terms α and α′ that have the same mode p, in the same context ψ, relative
to the prior signature Σ. As discussed above, these structural transformations will be used
to represent object language structural properties such as weakening and contraction that
are not invertible. The judgement ψ `Σ α ⇒p α

′ defines these transformations: it is the
least precongruence (preorder compatible with the term formers) closed under the axioms
specified in the signature Σ. For example, to say that the above monoid (�, 1) is affine, we
add in Σ a transformation axiom (x⇒ 1 : (x : p)→ p).

Because context descriptors α and their equality α1 ≡ α2 are defined prior to the
subsequent judgements, we suppress this equality by using α to refer to a term-modulo-≡–
that is, we assume a metatheory with quotient sets/types, and use meta-level equality for
object-level equality [2]. For example, because the judgement ψ ` α ⇒p β is indexed by
equivalence classes of context descriptions, the reflexivity rule above implicitly means α ≡ β
implies α ⇒ β. In examples, we will notate a signature declaration introducing a term
constant/function symbol by showing the function symbol applied to variables, rather than
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Types A,B,C A typep

P typep
ψ ` α : q ∆ ctxψ

Fα(∆) typeq

ψ, x : q ` α : p ∆ ctxψ A typep
Ux.α(∆ | A) typeq

Contexts Γ,∆ Γ ctxψ

· ctx·
Γ ctxψ A typep
Γ, x : A ctxψ,x:p

Γ `α A where Γ ctxψ and A typeq and ψ ` α : q

Γ,Γ′,∆ `β[α/x] C

Γ, x : Fα(∆),Γ′ `β C
FL

β ⇒ α[γ] Γ `γ ∆
Γ `β Fα(∆) FR

x : Ux.α(∆ | A) ∈ Γ β ⇒ β′[α[γ]/z] Γ `γ ∆ Γ, z : A `β′ C
Γ `β C

UL

Γ,∆ `α[β/x] A

Γ `β Ux.α(∆ | A) UR
x : P ∈ Γ β ⇒ x

Γ `β P
v

Γ `γ ∆ where Γ ctxψ and ∆ ctxψ′ and ψ ` γ :ψ′

Γ `· ·
·

Γ `γ ∆ Γ `α A
Γ `γ,α/x ∆, x : A

_,_

Figure 2 Sequent Calculus.

writing the formal c : p1, . . . , pn → q. For example, we write x : p, y : p ` x � y : p for
� : p, p→ p. We also suppress the signature Σ.

2.2 Sequent Calculus Rules

For a fixed mode theory Σ, we define a second layer of judgements in Figure 2. The first
judgement assigns each proposition/type A a mode p. Encodings of non-modal logics will
generally only make use of one mode, while modal logics use different modes to represent
different notions of truth, such as the linear and cartesian categories in the adjoint decom-
position of linear logic [5, 6] and the true/valid/lax judgements in modal logic [23]. The
next judgement assigns each context Γ a mode context ψ. Formally, we think of contexts as
ordered: we do not regard x : A, y : B and y : B, x : A as the same context, though we will
have an admissible exchange rule that passes between derivations in one and the other.

The sequent judgement Γ `α A relates a context Γ ctxψ and a type A typep and context
descriptor ψ ` α : p, while the substitution judgement Γ `γ ∆ relates Γ ctxψ and ∆ ctxψ′
and ψ ` γ :ψ′. Because Γ ctxψ means that each variable in Γ is in ψ, where x : Ai ∈ Γ
implies x : pi in ψ with Ai typepi , we think of Γ as binding variable names both in α and for
use in the derivation.

FSCD 2017



25:8 A Fibrational Framework for Substructural and Modal Logics

We now explain the rules for the sequent calculus; the reader may wish to refer to
the examples in Section 3 in parallel with this abstract description. We assume atomic
propositions P are given a specified mode p, and state identity as a primitive rule only
for them with the v rule. This says that Γ, x : P `x P , and additionally composes with a
structural transformation β ⇒ x. Using a structural property at a leaf of a derivation is
common in e.g. affine logic, where the derivation of β ⇒ x would use weakening to forget
any additional resources besides x.

Next, we consider the Fα(∆) type, which “internalizes” the context operation α as
a type/proposition. Syntactically, we view the context ∆ = x1 : A1, . . . , xn : An where
Ai typepi as binding the variables xi : pi in α, so for example Fα(x : A, y : B) and Fα[x↔x′](x′ :
A, y : B) are α-equivalent types (in de Bruijn form we would write Fα(A1, . . . , An) and use
indices in α). The type formation rule says that F moves covariantly along a mode morphism
α, representing a “product” (in a loose sense) of the types in ∆ structured according to the
context descriptor α. A typical binary instance of F is a multiplicative product (A⊗B in
linear logic), which, given a binary context descriptor � as in the introduction, is written
Fx�y(x : A, y : B). A typical nullary instance is a unit (1 in linear logic), written F1().
A typical unary instance is the F connective of adjoint logic, which for a unary context
descriptor constant f : p→ q is written Ff(x)(x : A). We sometimes write Ff(A) in this case,
eliding the variable name, and similarly for a unary U.

The rules for our F connective capture a pattern common to all of these examples. The
left FL rule says that Fα(∆) “decays” into ∆, but structuring the uses of resources in ∆ with
α by the substitution β[α/x]. We assume that ∆ is α-renamed to avoid collision with Γ (the
proof term here is a “split” that binds variables for each position in ∆). The placement of
∆ at the right of the context is arbitrary (because we have exchange-over-exchange), but
we follow the convention that new variables go on the right to emphasize that Γ behaves
mostly as in ordinary cartesian logic. The right FR rule says that you must rewrite (using
structural transformations) the context descriptor to have an α at the outside, with a mode
substitution γ that divides the existing resources up between the positions in ∆, and then
prove each formula in ∆ using the specified resources. We leave the typing of γ implicit,
though there is officially a requirement ψ ` γ :ψ′ where Γ ctxψ and ∆ ctxψ′ , as required for
the second premise to be a well-formed sequent. Another way to understand this rule is to
begin with the “axiomatic FR” instance FR∗ :: ∆ `α Fα(∆) which says that there is a map
from ∆ to Fα(∆) along α. Then, in the same way that a typical right rule for coproducts
builds a precomposition into an “axiomatic injection” such as inl :: A ` A+B, the FR rule
builds a precomposition with Γ `γ ∆ and then an application of a structural rule β ⇒ α[γ]
into the “axiomatic” version, in order to make cut and respect for transformations admissible.

Next, we turn to Ux.α(∆ | A). As a first approximation, if we ignore the context
descriptors and structural properties, U−(∆ | A) behaves like ∆→ A, and the UL and UR
rules are an annotation of the usual structural/cartesian rules for implication. In a formula
Ux.α(∆ | A), the context descriptor α has access to the variables from ∆ as well as an extra
variable x, whose mode is the same as the overall mode of Ux.α(∆ | A), while the mode of A
itself is the mode of the conclusion of α – in terms of typing, U is contravariant where F is
covariant. It is helpful to think of x as standing for the context that will be used to prove
Ux.α(∆ | A). For example, a typical function type A( B is represented by Ux.x⊗y(y : A | B),
which says to extend the “current context” x with a resource y. In UR, the context descriptor
β being used to prove the U is substituted for x in α (dual to FL, which substituted α

into β). The “axiomatic” UL instance UL∗ :: ∆, x : Ux.α(∆ | A) `α A says that Ux.α(∆ | A)
together with ∆ has a map to A along α. (The bound x in x.α subscript is tacitly renamed
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to match the name of the assumption in the context, in the same way that the typing rule
for λx.e : Πx : A.B requires coordination between two variables in different scopes). The
full rule builds in precomposition with Γ `γ ∆, postcomposition with Γ, z : A `β′ C, and
precomposition with β ⇒ β′[α[γ]/z].

Finally, the rules for substitutions are pointwise. In examples, we will write the components
of a substitution directly as multiple premises of FR and UL, rather than packaging them
with _,_ and ·.

For additives, the context descriptor is not modified; for example, a coproduct/disjunction
Ap +Bp typep for a mode p is given by the following rules:

Γ `α A
Γ `α A+B

Γ `α B
Γ `α A+B

Γ,Γ′, y : A `β[y/x] C Γ,Γ′, z : B `β[z/x] C

Γ, x : A+B,Γ′ `β C

Our framework enjoys the following admissible structural rules:

I Theorem 2.1 (Admissibility of cut, identity, structurality-over-structurality, and respect for
2-cells). The following rules are admissible:

Γ, x : A `β B Γ `α A
Γ `β[α/x] B Γ, x : A `x A

Γ `α C
Γ, y : A `α C

Γ, x : A, y : B `α C
Γ, y : B, x : A `α C

α⇒ β Γ `β A
Γ `α A

The following general constructions can be helpful for understanding how the types
behave. We write A ` B for x : A `x B. The three “fusion” rules on the left (which
are type isomorphisms, not just interprovabilities) relate F and U. Special cases include:
A × (B × C) is isomorphic to a primitive triple product {x : A, y : B, z : C}; currying;
and associativity of n-ary functions (A1, . . . , An → (B1, . . . , Bm → C) is isomorphic to
A1, . . . , An, B1, . . . , Bm → C). Second, the types respect a transformation covariantly for F
and contravariantly for U.

I Theorem 2.2 (Fusion and Respect Laws).

Fα(∆, x : Fβ(∆′),∆′′) a` Fα[β/x](∆,∆′,∆′′)
Ux.α(∆, y : Fβ(∆′),∆′′ | A) a` Ux.α[β/y](∆,∆′,∆′′ | A)

Ux.α(∆ | Uy.β(∆′ | A)) a` Ux.β[α/y](∆,∆′ | A)

Fα(∆) ` Fβ(∆) if α⇒ β

Ux.β(∆ | A) ` Ux.α(∆ | A) if α⇒ β

3 Examples

3.1 Products and Implications
First, we show how to encode substructural products and implications with various structural
properties. A mode theory with one mode m and a constant x : m, y : m ` x� y : m specifies
a completely astructural context (no weakening, exchange, contraction, associativity), as in
non-associative Lambek calculus [14]. To pass to ordered logic (associativity and unit laws
but none of exchange, weakening, and contraction), we add a constant 1 : m and equational
axioms x � (y � z) ≡ (x � y) � z and x � 1 ≡ x ≡ 1 � x – i.e. (�, 1) is a monoid. To
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get linear logic, we additionally add commutativity x � y ≡ y � x. As a first example of
using the sequent calculus, we show how commutativity of � in the mode theory for linear
logic generates commutativity of the corresponding A ⊗ B type, which is represented by
Fx�y(x : A, y : B):

x� y ⇒ (z � w)[y/z, x/w] x : A, y : B `y B x : A, y : B `x A
x : A, y : B `x�y Fz�w(z : B,w : A) FR

q : Fx�y(x : A, y : B) `q Fz�w(z : B,w : A) FL

First, we use FL to split the product type on the left up, obtaining permission to use its
pieces by substituting (x� y) for the variable q we began with. Next, to use FR, we must
transform the current context descriptor x� y into a substitution instance of the one from
the type z � w – dividing our resources in the form dictated by the type. We take y/z, x/w,
which requires a transformation x� y ⇒ y � x, which is given by reflexivity because of the
commutativity axiom in the mode theory. Then we can prove each of A and B by identity,
because we have the correct resources in each branch. In the mode theory for ordered logic,
without commutativity, the only possible division is x/z, y/w, and with permission only to
use x the first premise and y in the second, the derivation fails.

Returning to the mode theory of a non-symmetric �, we show how the two implication-
s/residuations of ordered logic are modeled by U-types; the expected rules are

Γ, A `o B

Γ `o A ⇀ B

∆ `o A Γ, B,Γ′ `o C

Γ, A ⇀ B,∆,Γ′ `o C

A,Γ `o B

Γ `o A ↼ B

∆ `o A Γ, B,Γ′ `o C

Γ,∆, A ↼ B,Γ′ `o C

We represent these by the U-types A ⇀ B := Uc.c�x(x : A | B) and A ↼ B := Uc.x�c(x : A |
B). The UL and UR rules specialize as follows:

Γ, x : A `β�x B
Γ `β Uc.c�x(x : A | B)

c : Uc.c�x(x : A | B) ∈ Γ
β ⇒ β′[c� α/z]
Γ `α A
Γ, z : A `β′ C

Γ `β C

Γ, x : A `x�β B
Γ `β Uc.x�c(x : A | B)

c : Uc.x�c(x : A | B) ∈ Γ
β ⇒ β′[α� c/z]
Γ `α A
Γ, z : A `β′ C

Γ `β C

The UR instances put x on the left or right of the current context descriptor β, by the
substitution β/c in UR. Consider the left rule for ⇀/Uc.c�x(x : A | B), and suppose that the
β in the conclusion is of the form x1� . . . c . . .�xn for distinct variables xi. Because the only
structural transformations are the associativity and unit equations, the transformation must
reassociate β as β1 � (c� α)� β2, with β′ = β1 � z � β2, for some β1 and β2. Here α plays
the role of ∆ in the ordered logic rule – the resources used to prove A, which occur to the
right of the implication being eliminated. Reading the substitution backwards, the resources
β′ used for the continuation are “β with c � α replaced by the result of the implication,”
as desired. While c and any variables used in α are still in Γ, permission to use them has
been removed from β′ – and there is no way to restore such permissions in this mode theory.
The rule for ↼ is the same, but with α on the opposite side of c. For the linear logic mode
theory, Uc.c�x(x : A | B) and Uc.x�c(x : A | B) are equal types (because commutativity is
an equation, and types are parametrized by equivalence-classes of context descriptors), and
both represent A( B.

Weakening (affine logic) is modeled by adding a directed structural transformation
w :: x⇒ 1, while contraction (relevant logic) is modeled by c :: x⇒ x� x. As an example
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use of weakening, we can show A�B ` A (formally z : Fx�y(x : A, y : B) `z A); and as an
example of contraction we can show A ` A�A (formally z : A `z Fx�y(x : A, y : A)):

w :: y ⇒ 1
x� y ⇒ x� 1 ≡ x x : A, y : B `x A

x : A, y : B `x�y A
z : Fx�y(x : A, y : B) `z A

FL
c :: z ⇒ (x� y)[z/x, z/y] z : A `z A

z : A `z Fx�y(x : A, y : A) FR

If we have both w :: x⇒ 1 and c :: x⇒ x�x (with some equations relating them), then x�y
is a cartesian product in the mode theory, and consequently the type Fx�y(x : A, y : B) will
behave like a cartesian product type A×B, and Uc.c�x(x : A | B) like the usual structural
A→ B. We refer to this mode theory as a cartesian monoid and write (×,>) for it.

These encodings are adequate in the following sense:

I Theorem 3.1 (Logical Adequacy for Products and Implications). Write A∗ for the encoding of
a type as above and extend this pointwise to contexts Γ∗. Further, define x1 : A1, . . . , xn : An =
x1 � . . .� xn. Then Γ ` A in the standard sequent calculus iff Γ∗ `Γ A

∗.

Proof. Proofs for ordered logic (products), affine logic, and cartesian logic are in the extended
version. Encoding an object-language derivation is straightforward, because the mode theory
is chosen to make each rule derivable. The back-translation from the framework relies on
cut-freeness (so that we only need to back-translate normal forms), and a lemma that, for
these mode theories, left-rules on variables that are in the framework context Γ but do not
occur in the context descriptor α can be strengthened away. J

This approach extends to contexts with more than one type of tree node, as in bunched
implication [21], which has two context-forming operations Γ,Γ′ and Γ; Γ′, along with
corresponding products and implications. Both are associative, unital, and commutative,
but ; has weakening and contraction while , does not. A context is represented by a tree
such as (x : A, y : B); (z : C,w : D) (considered modulo the laws), and the notation Γ[∆]
is used to refer to a tree with a hole Γ[−] that has ∆ as a subtree at the hole. In sequent
calculus style, the rules for the product and implication corresponding to , are

Γ[A,B] ` C
Γ[A ∗B] ` C

Γ ` A ∆ ` B
Γ,∆ ` A ∗B

Γ, A ` B
Γ ` A −∗ B

∆ ` A Γ[B] ` C
Γ[A −∗ B,∆] ` C

We model BI by a mode m with both a commutative monoid (∗, I) and a cartesian monoid
(×,>). We define the BI products and implications using the monoids as above: A ∗B :=
Fx∗y(x : A, y : B) and A × B := Fx×y(x : A, y : B) and A −∗ B := Uc.c∗x(x : A | B) and
A → B := Uc.c×x(x : A | B). A context descriptor such as (x × y) ∗ (z × w) captures the
“bunched” structure of a BI context, and substitution for a variable models the hole-filling
operation Γ[∆]. The derived left rules for ∗ and −∗ are

Γ,Γ′, x : A, y : B `β[x∗y/z] C

Γ, z : A ∗B,Γ′ `β C
c : A −∗ B ∈ Γ β ⇒ β′[c ∗ α/z] Γ `α A Γ, z : B `β′ C

Γ `β C

The rule for ∗ (and similarly ×) acts on a leaf z and replaces the leaf where z occurs in
the tree β with the correct bunch x ∗ y. The left rule for −∗ (and similarly for →) isolates
a subtree containing the implication c and resources ∗’ed with it, uses those resources to
prove A, and then replaces the subtree with the variable z standing for the result of the
implication.

FSCD 2017



25:12 A Fibrational Framework for Substructural and Modal Logics

3.2 Multi-use variables
An n-use variable [24, 1, 17] is a variable that is used “exactly n times” (modulo additives),
as expressed by the following sequent calculus rules for n-use functions

0 · Γ, x :1 P ` P
Γ, x :n A ` B
Γ ` A→n B

∆ ` A Γ, z :k B ` C
Γ + f :k A→n B + (nk ·∆) ` C

where Γ + ∆ acts pointwise by x :n A + x :m A = x :n+m A and n ·∆ acts pointwise by
n · xmA = x :nm A. In the left rule, Γ and ∆ have the same underlying variables and types
(but potentially different counts), and f :k A →n B abbreviates a context with the same
variables and types but 0’s for all counts besides f ’s. The left rule says that if you spend k
“uses” of a function that takes n uses of an argument, then you need nk uses of whatever you
use to construct the argument, in order to get k uses of the result.

We can model this in the mode theory of a commutative monoid by using context
descriptors that are themselves non-linear: we define A→n B := Uc.c�(xn)(x : A | B) where
xn := x� x� . . .� x (n times). This has the following instances of UL and UR:

Γ, x : A `β�xn B
Γ `β A→n B

f : Uf.f�xn(x : A | B) ∈ Γ β ⇒ β′[f � (α)n/z] Γ `α A Γ, z : B `β′ C
Γ `β C

In the left rule, β′ must be equal to some term β′′ � zk for some k and β′′ not mentioning
z (for this mode theory, any term is a polynomial of variables), and the only structural
transformations are the commutative monoid equations, so the premise is β ≡ (β′′ � zk)[f �
(α)n/z] ≡ β′′� fk� (α)nk. Here β′′ corresponds to the Γ in the above left rule (the resources
of the continuation, besides zk) and α corresponds to ∆. The full proof of adequacy is in the
extended version:
I Theorem 3.2 (Logical adequacy for n-use variables). x1 :k1 A1, . . . , xn :kn An ` C iff
x1 : A∗1, . . . , xn : A∗n `xk1

1 �...�x
kn
n
C∗, where A∗ translates A→n B to Uc.c�(xn)(x : A∗ | B∗)

3.3 Comonads
Following linear-nonlinear logic [5, 6], we decompose the ! exponential of intuitionistic linear
logic as the comonad of an adjunction between “linear” and “cartesian” categories. We start
with two modes l (linear) and c (cartesian), along with a commutative monoid (⊗, 1) on l and
a cartesian monoid (×,>) on c. Next, we add a context descriptor from c to l (x : c ` f(x) : l)
that we think of as including a cartesian context in a linear context. This generates types
Ff(x)(x : Ac) typel and Ux.f(x)(· | Al) typec which are adjoint Ff(x)(x : −) a Ux.f(x)(· | −). The
bijection on hom-sets is defined using FL and UR and their invertibility. The comonad of the
adjunction Ff(x)(x : Uc.f(c)(· | A)) is the linear logic !A.

In LNL [5], F (A×B) ∼= F (A)⊗F (B) and F (>) ∼= 1 (these properties of F are necessary
to prove that !A has weakening and contraction with respect to ⊗, for example), which we can
add to the mode theory by equations f(x× y) ≡ f(x)⊗ f(y) and f(>) ≡ 1. By Theorem 2.2,
these equations induce type isomorphisms because all of F,⊗,× are represented by F-types
in our framework. For example, F (A×B) ` F (A)⊗ F (B) is derived as follows:

f(y × z) ≡ f(y)⊗ f(z) y : A, z : B `f(y) Fx.f(x)(x : A) FR∗
y : A, z : B `f(z) Fx.f(x)(x : B) FR∗

y : A, z : B `f(y×z) Fz⊗w(z : Ff(x)(x : A), w : Ff(x)(x : B)) FR

x : Fy×z(y : A, z : B) `f(x) Fz⊗w(z : Ff(x)(x : A), w : Ff(x)(x : B)) FL

q : Ff(x)(x : Fy×z(y : A, z : B)) `q Fz⊗w(z : Ff(x)(x : A), w : Ff(x)(x : B)) FL

Omitting these equations allows us to describe non-monoidal (or lax monoidal, if we add
only one direction) left adjoints: in the extended version, we consider S4 � [23, 7], and prove
adequacy for it.
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3.4 Monads
We model a ♦A modality [7, 23] with rules

Γ ` A true
Γ ` A poss

Γ ` A poss
Γ ` ♦A true

A true ` C poss
Γ,♦A true ` C poss

by a mode theory with two modes t and p and context descriptor x : t ` g(x) : p; we define
♦g A := Uc.g(c)(· | Fg(x)(x : A)). This is always a monad, but it does not automatically have
a tensorial strength. For example, if we have a monoid (⊗, 1) on mode t and try to derive
strength

g(x⊗ y)⇒ β′[g(y)/z] x : A, y : ♦g B, z : Fg(B) `β′ Fg(A⊗B)
x : A, y : ♦g B `g(x⊗y) Fg(A⊗B) UL

x : A, y : ♦g B `x⊗y ♦g (A⊗B) UR

we are stuck, because there is no way to rewrite g(x⊗ y) as a term containing g(y). If ⊗ is
affine, then we can weaken away x and take β′ = z – corresponding to the context-clearing
in the left rule for ♦A – but then in the right-hand premise we will only have access to z,
not x, so ♦ correctly represents a non-strong monad in this setting. In the extended version,
we prove adequacy for this and extend the mode theory to express strong monads.

I Theorem 3.3 (Logical adequacy for a monad). We translate all types at mode t, representing
♦A as above. Then A1 true, . . . , A1 true ` C true iff x1 : A∗1, . . . , x1 : A∗n `x1⊗...⊗xn C∗,
and A1 true, . . . , An true ` C poss iff x1 : A∗1, . . . , x1 : A∗n `g(x1⊗...⊗xn) Fg(C∗). The three
“native” rules above are FR, UR, and a composite of UL followed by FL, respectively.

3.5 Spatial Type Theory
The spatial type theory for cohesion [31] which motivated this work has an adjoint pair [ a ],
where [ is a comonad and ] is a monad, with some additional properties. In the one-variable
case [15], we analyzed this as arising from an idempotent comonad2 in the mode theory: we
have a mode c with a cartesian monoid (×,>) and a context descriptor x : c ` r(x) : c such that
r(r(x)) ≡ r(x) and there is a directed transformation r(x)⇒ x. Then we define [A := Fr(A)
and ]A := Ur(A). These are adjoint, and the transformation gives the counit Fr(A) ` A and
the unit A ` Ur(A). Now that we have a multi-assumptioned logic, we can model the fact
that [A preserves products by the equational axiom r(x×y) ≡ r(x)× r(y). Overall, we encode
a simply-typed spatial type theory judgement x1 : A1 crisp, . . . ; y1 : B1 coh, . . . ` C coh as
x1 : A1, . . . , y1 : B1, . . . `r(x1)×...×y1×... C. As a sequent calculus, the rules from [31] are

A ∈ ∆ ∆; Γ, A ` C
∆; Γ ` C

∆; · ` A
∆; Γ ` [A

∆, A; Γ ` C
∆; Γ, [ A ` C

∆,Γ; · ` C
∆; Γ ` ] C

]A ∈ ∆ ∆; Γ, A ` C
∆; Γ ` C

In order, these correspond to (1) the action of the contraction and r(x)⇒ x transformations;
(2) FR with weakening, using monoidalness of r in one direction; (3) FL; (4) UR, using
monoidalness of r in the other direction and idempotence; (5) UL, with contraction. This
provides a satisfying explanation for the unusual features of these rules, such as promoting
all cohesive variables to crisp in ] -right, and eliminating a crisp ] in ] -left, and illustrates
how our framework can be used in investigating extensions of homotopy type theory.

2 In [15], the mode theory was actually an idempotent monad. The multicategorical generalization
prompted changes in the variance of F and U; for example, Fα(∆) must now be covariant in ψ ` α : r
for the n-ary ∆ to match ψ.
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4 Equational Theory on Derivations

In this section we give an equational theory describing βη-equality of derivations. We use this
equational theory in the categorical semantics below, and to reason about terms in encoded
languages (for example, to prove that a pair of entailments is an isomorphism, we show that
the maps compose to the identity up to these equations).

First, we need a notation for derivations of the α⇒ β judgement in Figure 1. We assume
names for constants are given in the signature Σ, and write 1α for reflexivity, s1; s2 for
transitivity (in diagrammatic order), and s1[s2/x] for congruence. We extend the signature
Σ to allow axioms for equality of transformations s1 ≡ s2 (for two derivations of the same
judgement s1, s2 :: ψ ` α⇒p β), and define equality to be the least congruence closed under
those axioms and some associativity, unit, and interchange laws, which are the 2-category
axioms extended to the multicategorical case (see the extended version for details). As
with equality of context descriptors, we think of all definitions as being parametrized by
≡-equivalence-classes of transformations, not raw syntax.

To simplify the axiomatic description of equality, we use a notation for derivations where
the admissible transformation, identity, and cut rules are internalized as explicit rules – so
the calculus has the flavor of an explicit substitution one. We write proof terms for these
plus the 4 U/F rules (the hypothesis rule for atoms is derivable from these) as follows:

Γ, x : A `x x : A
s :: α⇒ β Γ `β d : A

Γ `α s∗(d) : A
Γ, x : A `β e : B Γ `α d : A

Γ `β[α/x] e[d/x] : B

Γ,Γ′,∆ `β[α/x] d : C
Γ, x : Fα(∆),Γ′ `β (split ∆ = x in d) : C

s :: β ⇒ α[γ] Γ `γ ~di/xi : ∆

Γ `β s∗( ~di/xi) : Fα(∆)

x : Ux.α(∆ | A) ∈ Γ s :: β ⇒ β′[α[γ]/z] Γ `γ ~di/xi : ∆ Γ, z : A `β′ d′ : C

Γ `β s∗(let z = x( ~di/xi) in d) : C

Γ,∆ `α[β/x] d : A
Γ `β λ∆.d : Ux.α(∆ | A)

The equational theory of derivations is the least congruence containing the following equations.
d[x/x] ≡ d

x[d/x] ≡ d

d1[d2/x] ≡ d1 if x#d1

(d1[d2/x])[d3/y] ≡ (d1[d3/y])[d2[d3/y]/x]

1∗(d) ≡ d

(s1; s2)∗(d) ≡ s1∗(s2∗(d))
(s2[s1/x])∗(d2[d1/x]) ≡ s2∗(d2)[s1∗(d1)/x]

(split ∆ = x0 in d)[s∗( ~di/xi)/x0] ≡ (1β [s/x0])∗(d[ ~di/xi]) Fβ
(s∗(let z = x0(~di/xi) in d′))[λ∆.d/x0] ≡ (s[1α/x0])∗(d′[(d[~di/xi])/z]) Uβ

d :: Γ, x : Fα(∆),Γ′ `β C ≡ split ∆ = x in d[1∗(∆/∆)/x] Fη
d :: Γ `β Ux.α(∆ | A) ≡ λ∆.(1∗(let z = x(∆/∆) in z))[d/x] Uη

In the top-left, the first two equations say that identity is a unit for cut. The third says
that non-occurrence of a variable is a projection. The fourth is functoriality of cut. In the
top-right, the first two rules say that the action of a transformation is functorial, and the
third says that it commutes with cut. The typing in the third rule is d1 :: Γ `α′ A and
d2 :: Γ, x : A `β′ C and s1 :: α ⇒ α′ and s2 :: β ⇒ β′, so both sides are derivations of as
derivations of Γ `β[α/x] C. Finally, we have the βη-laws for F and U. The β laws are the
principal cut cases from our cut admissibility proof. The η laws witness left-invertibility of F
and right-invertibility of U.
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5 Categorical Semantics

In this section, we give a category-theoretic structure corresponding to the above syntax.
First, we define a cartesian 2-multicategory as a semantic analogue of the syntax in Figure 1.

I Definition 5.1. A (strict) cartesian 2-multicategory consists of
1. A setM0 of objects.
2. For every objectB and every finite list of objects (A1, . . . , An), a categoryM(A1, . . . , An;B).

The objects of this category are 1-morphisms and its morphisms are 2-morphisms; we
write composition of 2-morphisms as s1 · s2.

3. For each object A, an identity arrow 1A ∈M(A;A).
4. For any object C and lists of objects (B1, . . . , Bm) and (Ai1, . . . , Aini) for 1 ≤ i ≤

m, a composition functor (g, (f1, . . . , fm)) 7→ g ◦ (f1, . . . , fm) : M(B1, . . . , Bm;C) ×∏m
i=1M(Ai1, . . . , Aini ;Bi) −→M(A11, . . . , Amnm ;C). We write the action of this func-

tor on 2-cells as d ◦2 (e1, . . . , em).
5. For any function σ : {1, . . . ,m} → {1, . . . , n} and objects A1, . . . , An, B, a renaming

functor f 7→ fσ∗ :M(Aσ1, . . . , Aσm;B)→M(A1, . . . , An;B)
6. satisfying some equalities (see the extended version)

The next three definitions will be used to describe the Γ `α A judgement.

I Definition 5.2. A functor of cartesian 2-multicategories π : D → M consists of a
function π0 : D0 → M0 and functors D(A1, . . . , An;B) → M(π0(A1), . . . , π0(An);π0(B))
such that the chosen identities, compositions, and renamings are preserved (strictly). Given
a functor π, we write Dα(A1, . . . , An;B) for the fiber over α ∈M(πA1, . . . , πAn;πB).

I Definition 5.3. A functor of cartesian 2-multicategories π : D →M is a local discrete fi-
bration if each induced functor of ordinary categoriesD(A1, . . . , An;B)→M(πA1, . . . , πAn;πB)
is a discrete fibration. When π is a local discrete fibration, each fiber is a discrete set.

I Definition 5.4. If π : D → M is a local discrete fibration, then a morphism ξ ∈
D(A1, . . . , An;B) is opcartesian if all diagrams of the left-hand form are pullbacks of
categories, and a morphism ξ ∈ D(~C,B, ~D;E) is cartesian at B if all diagrams of the
right-hand form are pullbacks of categories:

D(~C,B, ~D;E)
(−)◦Bξ //

π

��

D(~C, ~A, ~D;E)

π

��
M(π ~C, πB, π ~D;πE)

(−)◦πBπξ
//M(π ~C, π ~A, π ~D;πE)

D( ~A;B)
ξ◦B(−) //

π

��

D(~C, ~A, ~D;E)

π

��
M(π ~A;πB)

πξ◦πB(−)
// D(π ~C, π ~A, π ~D;πE)

Given µ : (p1, . . . , pn)→ q inM, we say that π has µ-products if for any Ai with πAi = pi,
there exists a B with πB = q and an opcartesian morphism in Dµ(A1, . . . , An;B). Dually,
we say π has µ-homs if for any i, any B with πB = q, and any Aj with πAj = pj for j 6= i,
there exists an Ai with πAi = pi and a cartesian morphism in Dµ(A1, . . . , An;B). We say
that π is an opfibration if it has µ-products for all µ, a fibration if it has µ-homs for all
µ, and a bifibration if it is both an opfibration and a fibration.

The proofs of our soundness and completeness results are described in Appendix A:

I Theorem 5.5 (Mode theory presents a multicategory). A mode theory Σ presents a cartesian
2-multicategoryM, whereM0 is the set of modes, and an object ofM(p1, . . . , pn; q) is a term
x1 : p1, . . . , xn : pn ` α : q and a morphism ofM(p1, . . . , pn; q) is a structural transformation
s :: ψ ` α⇒q β, both considered modulo ≡.
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I Theorem 5.6 (Completeness/Syntactic Bifibration). For a fixed mode theoryM, the syntax
presents a bifibration π : D →M, where:

Objects of D are pairs (p,A typep);
1-morphisms Γ→ B, i.e., objects of D(Γ;B), are pairs (α, d :: Γ `α B) (up to ≡);
2-morphisms (α, d) → (α′, d′) are structural transformations s :: α ⇒ α′ such that
s∗(d′) ≡ d;
the µ-products are F-types, and the µ-homs are U-types.

The functor π : D →M is given by first projection on objects and 1-morphisms, and sends
2-morphisms to the underlying structural transformations.

I Theorem 5.7 (Soundness/Interpretation in any bifibration). Fix a bifibration π : D →M.
Then there is a function J−K from types A typep to JAK ∈ D0 with π(JAK) = p and from
≡-classes of derivations x : A1, . . . , xn : An `α C to morphisms d ∈ D(JA1K, . . . , JAnK; JCK),
such that π(d) = α.

6 Related and Future Work

We have described a sequent calculus that can express a variety of substructural and modal
logics through a suitable choice of mode theory. Our framework builds on many approaches
to substructural and modal logic in the literature. Logical rules that act at a leaf of a
tree-structured context go back to the Lambek calculus [14]. A rich collection of context
structures that correspond to type constructors plays a central role in display logic [4]. The
λ-calculus for resource separation [3] is similar to mode theories with one mode, where
there is at most one 2-cell between a given pair of 1-cells; at the logical level, our calculus
is a unification of this with multimodal adjoint logic [26]. Algebras of resources play a
central role in semantics of substructural and modal logics [28] and in their encodings in
first-order logic [27], and resources on variables are used to track modalities in Agda’s
implementation [1] and in linear dependent types [17]. LF representations of modal or
substructural logics work by restricting the use of cartesian variables [9]. Relative to all
of these approaches, we believe that the analysis of the context structures/resources as a
term in a base type theory, and the fibrational structure of the derivations over them, is a
new and useful observation. For example, rather than needing extra-logical conditions on
proof rules to ensure cut admissibility, as in display logic, the conditions are encoded in the
language of context descriptors and the definition of types from them. Moreover, none of
these existing approaches allow for proof-relevant 2-cells/structural rules, and their presence
(and the equational theory we give for them) is important for our applications to homotopy
type theory.

A point of contrast with substructural logical frameworks [8, 34, 25] is that logics are
“embedded” in our calculus (giving a type translation such that provability in the object
logic corresponds to provability in ours), rather than “encoding” the structure of derivations.
This way, we obtain cut elimination for object languages as a corollary of framework cut
elimination.

Bifibrations have also been used recently to model refinement types and logical relations [18,
19, 11]. Superficially, this seems to be a different use of the same semantic structure, because
the base and domain categories of the bifibration play a different role. Here, the base
mode theory describes different categories of types and functors (type constructors) between
between them, and the domain represents types and terms; whereas in refinement types/logical
relations, the base category represents types and terms, and the domain represents a further
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notion of predicate/specification. It would be interesting to investigate deeper connections
and combine the two notions.

One direction for future work is to continue a preliminary investigation of equational
adequacy that is discussed in the extended version, investigating whether the logical adequacy
proofs are an isomorphism on βη-classes of derivations – or, phrased semantically, that a
bifibration over the mode theory is the usual notion of categorical model for a particular logic
(e.g. a bifibration over the ordered logic mode theory presents the free monoidal category).
It is generally easy to show that object-language equations are true in the framework. We
conjecture that the converse is true for the mode theories we have described here, which
says that the “extra” types and judgements available in the framework do not add to the
equations between terms in the image of encoded sequents. Proving this is challenging
because the equational theory of Section 4 does not itself obviously have the subformula
property. We have sketched a proof of equational adequacy for a simple case (ordered logic
products), assuming a lemma that the equational theory from Section 4 can be characterized
by permuting conversions on cut-free derivations. A related avenue for improvement is that
our adequacy proofs require reasoning about the 1- and 2-cells in the mode theory, which
we have currently done entirely naïvely, but could possibly benefit from higher-dimensional
rewriting techniques.

Additionally, we plan to apply our framework to investigate more extensions of homotopy
type theory, such as an internal language for parametrized spectra, and an extension of
spatial type theory to differential cohesion [29]. We also plan to consider encodings of
programming-focused type theories, such as specialized effect calculi.

A final direction for future work is to extend our framework with first-order quantifiers,
structured conclusions (as in classical or display logic), and dependent types, which all seem
possible but not obvious. Scaling to dependent types will require more worked examples
to understand the patterns of substructural and modal type dependency that a framework
should capture.
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A Technical Appendix: Categorical Semantics

To illustrate the connection between the syntax and the semantics, we sketch the proofs of
soundness and completeness; full details are available in the extended version.

Proof of Theorem 5.6. Our goal is to construct a bifibration π : D →M from the syntax.
First, a mode theory Σ presents a cartesian 2-multicategory M, where M0 is the set

of modes, and an object of M(p1, . . . , pn; q) is a term x1 : p1, . . . , xn : pn ` α : q and a
morphism ofM(p1, . . . , pn; q) is a structural transformation s :: ψ ` α⇒q β, both considered
modulo ≡.

Next, we construct the domain category D as indicated in the theorem statement: an
object is a pair (p,A) where A is a type of mode p; a 1-cell (ψ,Γ)→ (p,A) is a pair (α, d)
where ψ ` α : p and d is a derivation of Γ `α A; and a 2-cell (α, d)⇒ (α′, d′) is a structural
transformation s :: α ⇒ α′ such that s∗(d′) ≡ d. We write just A and d and s for objects
and 1-cells and 2-cells, leaving the underlying modes and mode morphisms implicit, and we
also omit variable names from sequents.

Composition of 1-morphisms is defined by iterating cut: given g :: (x1 : B1, . . . , xm :
Bm `α C) and fi :: (Ai1, . . . , Aini `βi Bi) we set

g ◦ (f1, . . . , fn) := (α[β1/x1, . . . , βm], g[f1/x1, . . . , fm/xm])

That the latter derivation lies over α[β1/x1, . . . , βm] follows from the cut and weakening
principles.

For the action of these composition functors on 2-morphisms, suppose we are given
1-morphisms

d :: x1 : B1, . . . , xm : Bm `α C
d′ :: x1 : B1, . . . , xm : Bm `α′ C
ei :: Ai1, . . . , Aini `βi Bi
e′i :: Ai1, . . . , Aini `β′i Bi

and 2-morphisms S : (α, d)⇒ (α′, d′) and Ti : (βi, ei)→ (β′i, e′i) such that S has underlying
transformation s :: α ⇒ α′ and the Ti have underlying transformations ti :: βi ⇒ β′i
respectively. This means that d ≡ s∗(d′) and ei ≡ (ti)∗(e′i) for all i. The composite S ◦2
(T1, . . . , Tm) is the 2-morphism given by the underlying transformation s[t1/x1, . . . , tm/xm].
This is a valid 2-morphism d[e1/x1, . . . , em/xm]⇒ d′[e′1/x1, . . . , e

′
m/xm] because

(s[t1/x1, . . . , tm/xm])∗(d′[e′1/x1, . . . , e
′
m/xm])

≡(s[t1/x1, . . . , tm−1/xm−1])∗(d′[e′1/x1, . . . , e
′
m−1m/xm−1])[(tm)∗(e′m)/xm]

...
≡s∗(d′)[(t1)∗(e′1)/x1, . . . , (tm)∗(e′m)/xm]
≡d[e1/x1, . . . , em/xm]
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as required, where we have repeatedly applied the equation

(s2[s1/x])∗(d2[d1/x]) ≡ s2∗(d2)[s1∗(d1)/x] .

The unit and associativity laws for 1-morphisms in D follow from the first set of equations
for derivations, and from the definition of multi-variable substitution as iterated cut. For 2-
morphisms, they follow as composition of 2-morphisms is simply composition of the underlying
transformations in the mode theory.

The cartesian structure in D is given by the admissible rules for weakening-over-weakening,
exchange-over-exchange and contraction-over-contraction, from which all renamings can be
made. These rules also all preserve the underlying mode morphisms in the correct way to
make π functorial.

The next step is to show that π is a local discrete fibration. Suppose we have a context
Γ and object B. We must show that the functor π : D(Γ;B) → M(πΓ;πB) is a discrete
fibration. Let α, α′ ∈M(πΓ;πB) be mode morphisms and suppose we have a transformation
s :: α⇒ α′ between them. Any 2-morphism in D(Γ;B) lying over s must clearly have s as
the underlying transformation. Given a lift d′ :: Γ `α′ B of α′, then we can consider s as a
2-morphism (α, s∗(d′)) ⇒ (α′, d′) over s, whose domain is the action of s on d′, s∗(d′), as
expected. The equational condition s∗(d) ≡ s∗(d) is trivially satisfied, and in fact forces s∗(d)
as the only possible choice of domain, so the lift is unique. So π is a local discrete fibration.

We now show that π is an opfibration, i.e., has α-homs for all mode morphisms ψ ` α : q.
Suppose we have lifts for the modes in ψ, i.e., a context ∆ with π∆ = ψ. We define the
opcartesian lift of α to be FR∗ :: ∆ `α Fα(∆), the generating map from ∆ to Fα(∆) that
lives over α, which is an instance of the F right rule where both premises are the identity. To
verify that this is an opcartesian morphism, we must show that all squares of the form

D(Γ,Fα(∆),Γ′;C)
−[FR∗/x0]//

π

��

D(Γ,∆,Γ′;C)

π

��
M(πΓ, q, πΓ′;πC)

−[α/x0]
//M(πΓ, ψ, πΓ′;πC)

are pullbacks of categories. For this we will use the following characterisation: a diagram of
categories

A H //

K
��

B

F
��

C
G
// D

is a pullback diagram iff
For every pair of objects b ∈ B and c ∈ C with Fb = Gc, there is a unique object a ∈ A
such that Ha = b and Ka = c; and,
For every pair of morphisms f ∈ B(b, b′) and g ∈ C(c, c′) with Fb = Gc and Fb′ = Gc′

and Ff = Gg, there is a unique morphism θ ∈ A such that Hθ = f and Kθ = g. The
domain and codomain of θ are fixed by the previous property.

First, we show the property for objects. Suppose we have an object d ∈ D(Γ,∆,Γ′;C)
and β ∈ M(πΓ, q, πΓ′;πC) such that π(d) = β[α/x0]. This simply states that d is of the
form d :: Γ,∆,Γ′ `β[α/x0] C. We must produce a unique object e ∈ D(Γ,Fα(∆),Γ′;C) such
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that π(e) = β and e[FR∗/x0] ≡ d. We take as our e the derivation split ∆ = x0 in d. This
lies over β, and we calculate

e[FR∗/x0] = (split ∆ = x0 in d)[1α∗(x/x)/x0]

≡ (1β [1α/x0])∗(d[ ~x/x])
≡ (1β[α/x0])∗(d)
≡ d

by the β-law for F and unit laws. It remains to show uniqueness. Suppose we have some
derivation e′ such that π(e′) = β and e′[FR∗/x0] ≡ d. By the η-law for F, we have

e′ ≡ split ∆ = x0 in e′[FR∗/x0] ≡ split ∆ = x0 in d = e

as required.
We now turn to the pullback property for morphisms. Let β, β′ ∈M(πΓ, q, πΓ′;πC) and

let s :: β ⇒ β′ be a morphism. Further suppose that we have derivations d :: Γ,∆,Γ′ `β[α/x0]
C and d′ :: Γ,∆,Γ′ `β′[α/x0] C such that (s[1α/x0])∗(d′) ≡ d. This describes a morphism
T : d ⇒ d′ in D(Γ,Fα(∆),Γ′;C) that lies over s[1α/x0]. This latter transformation is the
result of applying the functor −[α/x0] to s.

We now must find a morphism S in D(Γ,∆,Γ′;C) that lies over s, and such that the
functor −[FR∗/x0] applied to the morphism S yields T . We know that for S to lie over s, its
underlying structural transformation must be s. The action of −[FR∗/x0] on S then takes s
to s[1α/x0] as expected.

By the previous argument for objects, we know that S must have domain split ∆ = x0 in d
and codomain split ∆ = x0 in d′. We can verify that choosing the underlying transformation
s gives a well-defined 2-morphism S : (split ∆ = x0 in d)⇒ (split ∆ = x0 in d′):

s∗(split ∆ = x0 in d′) ≡ split ∆ = x0 in s∗(split ∆ = x0 in d′)[FR∗/x0]
≡ split ∆ = x0 in s∗(split ∆ = x0 in d′)[(1α)∗(FR∗)/x0]
≡ split ∆ = x0 in (s[1α/x0])∗(split ∆ = x0 in d′[FR∗/x0])
≡ split ∆ = x0 in (s[1α/x0])∗(d′)
≡ split ∆ = x0 in d

where we have used the η-law followed by the β-law.
We conclude that all squares of the given form are pullback squares, and so every α has

an opcartesian lift. Therefore π is an opfibration. The proof that π is also a fibration is very
similar, using U types instead of F types. J

Proof of Theorem 5.7. Conversely, we show some cases of the interpretation of the syntax
in any bifibration π over the 2-multicategoryM determined by the mode theory.

Since π is a local discrete fibration, the 2-cells ofM act on the fibers. Suppose ψ ` α, β : p
and s : α ⇒ β. We re-use the notation s∗ for the induced function (of sets) Dβ(Γ;A) →
Dα(Γ;A) that sends an object d ∈ Dα(Γ;A) to the domain of the unique lift of s with
codomain d.

The definition of an opfibration of 2-multicategories guarantees that, given a morphism in
the mode category ψ ` α : q and a set of objects ∆ that lies over ψ, there is an opcartesian
morphism over α with domain ∆. For each α we choose one such lift and take the codomain
of this morphism as our interpretation of Fα(∆). Let us name this opcartesian lift ζα,∆ :
∆→ Fα(∆). ζ corresponds to the axiomatic FR∗.
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We assume a given interpretation of each atomic proposition JP typepK as an object of
D that lies over p. The sequent calculus rules are interpreted as follows (we elide semantic
brackets on objects):

The identity derivation of a sequent x :: Γ `x A is defined to be JxK = 1A.
Given a derivation d :: Γ `β A and transformation s :: β′ ⇒ β, the respect-for-
transformations derivation is interpreted as Js∗(d)K = s∗(JdK).
For d1 :: Γ, x : A,Γ′ `α B and d2 :: Γ,Γ′ `β A, cut is interpreted as Jd1[d2/x]K = Jd1K ◦A
Jd1K (writing e ◦A f for a one-place composition derived from the n-place multicategory
composition).
For FL

Γ,Γ′,∆ `β[α/x] C

Γ, x : Fα(∆),Γ′ `β M : C FL

the inductive hypothesis (after an exchange, which preserves the size of the deriva-
tions) gives a morphism JdK ∈ Dβ[α/x](Γ,∆,Γ′;C) and we must produce a morphism
Dβ(Γ,Fα(∆),Γ′;C). By the opcartesian-ness of ζα,∆, the following square is a pullback:

D(Γ,Fα(∆),Γ′;C)
(−)◦ζα,∆ //

π

��

D(Γ,∆,Γ′;C)

π

��
M(πΓ, πFα(∆), πΓ′;πC)

(−)◦α
//M(πΓ, π∆, πΓ′;πC)

We are given an object of the bottom left (β) and the top right (JdK), with πJdK =
β ◦πFα(∆) α. By the above characterization of pullbacks of categories, there is a unique
object JdKF

α,∆ ∈ D(Γ,Fα(∆),Γ′;C) so that π(JdKF
α,∆) = β. We take this object to be our

interpretation.
For FR

s : β ⇒ α[γ] Γ `γ M : ∆
Γ `β Fα(∆) FR

where γ = (α1, . . . , αn) and ∆ = (C1, . . . , Cn), the first premise is a 2-cell s : β ⇒
α ◦ (α1, . . . , αn), and the second is interpreted as a set of morphisms JdiK ∈ Dαi(Γ;Ci).
We take the interpretation of the conclusion to be s∗(ζα,∆ ◦ (Jd1K, . . . , JdnK))

What remains is to check that the above interpretation function respects the equational
theory on derivations (see the extended version). J
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