109 research outputs found

    Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe)

    Get PDF
    We studied the genotype diversity of cyanobacterial symbionts in the predominately terricolous cyanolichen genus Peltigera (Peltigerales, Lecanoromycetes) in Estonia. Our sampling comprised 252 lichen specimens collected in grasslands and forests from different parts of the country, which represented all common Peltigera taxa in the region. The cyanobacteria were grouped according to their tRNA(Leu) (UAA) intron sequences, and mycobiont identities were confirmed using fungal ITS sequences. The studied Peltigera species associated with 34 different "Peltigera-type" Nostoc trnL genotypes. Some Peltigera species associated with one or a few trnL genotypes while others associated with a much wider range of genotypes. Mycobiont identity was the primary factor that determined the presence of the specific Nostoc genotype within the studied Peltigera thalli. However, the species-specific patterns of cyanobiont selectivity did not always reflect phylogenetic relationships among the studied fungal species but correlated instead with habitat preferences. Several taxa from different sections of the genus Peltigera were associated with the same Nostoc genotype or with genotypes in the same habitat, indicating the presence of functional guild structure in the photobiont community. Some Nostoc trnL genotypes were only found in the Peltigera species of moist and mesic forest environments, while another set of Nostoc genotypes was typically found in the Peltigera species of xeric habitats. Some Nostoc trnL genotypes were only found in the Peltigera taxa that are common on alvars and may have specialized to living in this unusual and threatened habitat type. (C) 2018 Elsevier Ltd and British Mycological Society. All rights reserved.Peer reviewe

    New resinicolous Chaenothecopsis species from China

    Get PDF
    Four new resinicolous species of Chaenothecopsis are described from China: Chaenothecopsis perforata from exudate of Rhus chinensis (Anacardiaceae), C. pallida from exudate of Ailanthus altissima (Simaroubaceae), C. resinophila from exudate of Kalopanax septemlobus (Araliaceae) and C. hunanensis from resin of Pinus massoniana (Pinaceae). All the new species are compared with previously described resinicolous mycocalicioid taxa, and several new features in these species are presented. The newly described species cannot always be distinguished by any single character, but they all possess unique combinations of morphological, chemical and ecological features. Several aspects in the ecology and evolution of boreal and tropical resinicolous species are briefly discussed.</p

    Uncovering the natural variability of araucariacean exudates from ex situ and in situ tree populations in New Caledonia using FTIR spectroscopy

    Get PDF
    Background Understanding the natural variability of plant resins is crucial for evaluating the chemical information stored in ambers that may support inferring palaeoenvironmental conditions. However, even among extant resin-producing plants, the variation of resinous exudates within and between tree genera and species is still poorly understood. Methods We analysed plant exudates from across the Araucariaceae in New Caledonia using Fourier-transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). Both, wild (in situ) and arboretum grown (ex situ) populations were used to uncover the effects of intergeneric, inter- and intraspecific variation of the araucariacean plants on the resin chemistry. Results We show that even resins from the same species in the same habitat do have natural (intraspecific) chemical variation. Some of the variation can result from the degree of resin polymerisation, but this is not the only source of variation. Wild sourced resins have greater natural intraspecific chemical variation than the arboretum sourced ones. Interspecific and intergeneric differences were not easy to distinguish in the resins sampled. This has strong implications for the evaluation of the chemical information from worldwide ambers: multiple samples should be analysed to give a more accurate picture of the natural chemical variation present and how this may or may not overlap with the chemistries of other resin types. Additionally we discovered that the Araucariacean species can produce up to three distinct types of exudate (gum, resin, and gum resin). This is the first time that gum resins have been identified and characterized with FTIR-ATR. We also provide a guide on how to distinguish the exudate types when using FTIR-ATR.Peer reviewe

    Coordinated ultrastructural and phylogenomic analyses shed light on the hidden phycobiont diversity of Trebouxia microalgae in Ramalina fraxinea

    Full text link
    [EN] The precise boundary delineations between taxa in symbiotic associations are very important for evolutionary and ecophysiological studies. Growing evidence indicates that in many cases, the use of either morphological characters or molecular markers results in diversity underestimation. In lichen symbioses. Trebouxia is the most common genus of lichen phycobionts, however, the diversity within this genus has been poorly studied and as such there is no clear species concept. This study constitutes a multifaceted approach incorporating aspects of ultrastructural characterization by TEM and phylogenomics to evaluate the morphological and genetic diversity of phycobionts within the sexually reproducing lichen Ramalina fraxinea in the context of Mediterranean and temperate populations. Results reveal an association with at least seven different Trebouxia lineages belonging to at least two species. T. decolorans and T. jamesii, and diverse combinations of such lineages coexisting within the same thallus depending on the analysed sample. Some of these lineages are shared by several other non-related lichen taxa. Our findings indicate the existence of a highly diverse assemblage of Trebouxia algae associating with R. fraxinea and suggest a possible incipient speciation within T. decolorans rendering a number of lineages or even actual species. This study stresses the importance of coordinated ultrastructural and molecular analyses to improve estimates of diversity and reveal the coexistence of more than one Trebouxia species within the same thallus. lt is also necessary to have clearer species delimitation criteria within the genus Trebouxia and microalgae in general.This study was funded by the Ministerio de Economia y Competitividad (MINECO CGL2012-40058-0O2-01/02), FEDER, the Generalitat Valenciana (PROMETEOII2013/021, GVA) and the Direccion General de Universidades e Investigacion de la Consejeria de Educacion de la Comunidad de Madrid - Universidad de Alcala (CCG10-UAH/GEN-5904). Drs. Arantxa Matins and Patricia Moya (Universitat de Valencia) made helpful comments on the manuscript.Català, S.; Campo, ED.; Barreno, E.; García-Breijo, F.; Reig Armiñana, J.; Casano, L. (2016). Coordinated ultrastructural and phylogenomic analyses shed light on the hidden phycobiont diversity of Trebouxia microalgae in Ramalina fraxinea. Molecular Phylogenetics and Evolution. 94:765-777. https://doi.org/10.1016/j.ympev.2015.10.021S7657779

    Alectorioid morphologies in Paleogene lichens : New evidence and re-evaluation of the fossil Alectoria succini Mägdefrau

    Get PDF
    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon.Peer reviewe

    Airborne DNA reveals predictable spatial and seasonal dynamics of fungi

    Get PDF
    Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms
    corecore