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A B S T R A C T 
 

We studied the genotype diversity of cyanobacterial symbionts in the predominately terricolous 

cyanolichen genus Peltigera (Peltigerales, Lecanoromycetes) in Estonia. Our sampling comprised 

252 lichen specimens collected in grasslands and forests from different parts of the country, which 

represented all common Peltigera taxa in the region. The cyanobacteria were grouped according 

to their tRNALeu (UAA) intron sequences, and mycobiont identities were confirmed using fungal 

ITS sequences. The studied Peltigera species associated with 34 different “Peltigera-type” Nostoc 

trnL genotypes. Some Peltigera species associated with one or a few trnL genotypes while others 

associated with a much wider range of genotypes. Mycobiont identity was the primary factor that 

determined the presence of the specific Nostoc genotype within the studied Peltigera thalli. 

However, the species-specific patterns of cyanobiont selectivity did not always reflect 

phylogenetic relationships among the studied fungal species but correlated instead with habitat 

preferences. Several taxa from different sections of the genus Peltigera were associated with the 

same Nostoc genotype or with genotypes in the same habitat, indicating the presence of 

functional guild structure in the photobiont community. Some Nostoc trnL genotypes were only 

found in the Peltigera species of moist and mesic forest environments, while another set of Nostoc 

genotypes was typically found in the Peltigera species of xeric habitats. Some Nostoc trnL 

genotypes were only found in the Peltigera taxa that are common on alvars and may have 

specialized to living in this unusual and threatened habitat type. 
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1. Introduction 

Lichen symbioses always include at least one primary fungal symbiont, the mycobiont, and one or 

more photosynthetic partners, the photobionts. The photobionts of bipartite lichens are either 

green algae or cyanobacteria, while tripartite lichen thalli include both major types of photobionts 

(Rikkinen, 2002; Henskens et al., 2012). Besides the primary mycobiont and the photobionts, also 

many associated fungi and bacteria take part in lichen-symbiotic consortia (Grube et al., 2009; 

Sigurbjornsdottir et al., 2015; Aschenbrenner et al., 2016; Grube and Wedin, 2016; Spribille et al., 

2016). 

Approximately 10% of all known lichen-symbiotic fungi associate with cyanobacterial 

photobionts (Rikkinen, 2015, 2017). Most fungi in the order Peltigerales (Ascomycota) invariably 

associate with cyanobacteria, most commonly with symbiotic representatives of Nostoc 

(Nostocales). These fungi include all species of Peltigera (Vitikainen, 1994, 2007). Lichen-symbiotic 

Nostoc cannot presently be named to species, but symbiotic genotypes can be identified by using 

DNA markers such as the cyanobacterial trnL intron, rbcLX and 16S rDNA genes (Rikkinen, 2013; 

Kaasalainen et al., 2015; Joneson and O'Brien, 2017; Magain et al., 2017a). 

Some of the earliest molecular studies on cyanolichens focused on the Nostoc cyanobionts 

of Peltigera in northern Europe and western North America (Paulsrud et al., 1998, 2000, 2001). In 

these studies, only one Nostoc genotype was typically detected in each bipartite Peltigera thallus 

and in different cephalodia of the tripartite Peltigera species. These findings have not been 

challenged by the results of more recent studies, with the exception that some tripartite Peltigera 

species have sometimes been found to house different Nostoc genotypes within different 

cephalodia of single thalli (Paulsrud et al., 2000; Kaasalainen et al., 2009; Rikkinen, 2013). Several 

studies on green algal lichens, have challenged the dogma of single photobiont genotypes or taxa 

within a single lichen thallus, and suggest the presence of mixed photobiont populations in many 

cases (e.g. Guzow-Krzeminska, 2006; Casano et al., 2010; Onuț;-Brannstrom et al., 2018). 

However, Paul et al. (2018) compared Sanger sequencing and high-throughput sequencing for 

determining photobiont diversity in lichens and proposed that Sanger technology consistently 

yields the most abundant photobiont sequence in the lichen sample. 

The level of photobiont specificity in lichen-forming fungi can be determined by elucidating 

the number of photosynthetic partners that are utilized by one mycobiont species (Yahr et al., 

2006; Otalora et al., 2010; Magain et al., 2017a). The symbiont specificity expressed by lichen-

forming fungal species and their main photobionts varies widely and they range from strict 
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specialists, i.e. those associating with only one species, through moderate specialists, i.e., those 

associating consistently with a few species, to broad generalists, i.e. those associating with many 

different species with little or no apparent selectivity (Magain et al., 2017a; Lu et al., 2018). The 

fact that lichen mycobionts generally tend to associate with only one or a few photobiont genera 

(green algae or cyanobacteria), suggests inherent deep phylogenetic constraints in partner 

compatibility (Rolshausen et al., 2018). In rare cases, single mycobionts can form different lichen 

morphotypes in symbiosis with compatible green algal and cyanobacterial photobionts, 

respectively, and such disparate morphs can either combine into one compound thallus or live 

separately (Rikkinen, 2015). 

The patterns of photobiont specificity are scale dependent regarding the various 

phylogenetic scales (e.g. genotype, species or higher taxonomical levels) and as well as the spatial 

scale. An analysis of photobiont association patterns within the green algal lichen family 

Parmeliaceae at the scale of ecoregions indicated that the generic identity of fungal hosts was a 

better predictor of photobiont association than ecological predictors (Leavitt et al., 2015). 

Likewise, a study of photobiont specificity in Peltigera section Polydactylon revealed very high 

specificity even at the smallest spatial scales analysed (Chagnon et al., 2018). 

However, according to several studies on green algal lichens (Fernandez-Mendoza et al., 

2011; Sadowska-Deś et al., 2014; Leavitt et al., 2015, 2016; Williams et al., 2017), climatic factors 

can also play a role in shaping photobiont distributions and association patterns, even at a global 

scale (Singh et al., 2017; Magain et al., 2017a). While reciprocal (one-to-one) specificity by both 

symbiotic partners has been reported for some mycobionts (Otalora et al., 2010; Magain et al., 

2017a, b), many fungal species associate with several different Nostoc (Fedrowitz et al., 2012; 

Magain et al., 2017a), or Trebouxia haplotypes (Leavitt et al., 2015). It is suggested that association 

patterns among lichen symbionts at a very fine level would be environmentally structured rather 

than phylogenetically constrained and switching between photobiont ecotypes with distinct 

environmental preferences has been hypothesized as an adaptive strategy for lichen-forming fungi 

(Rikkinen, 2003; Rolshausen et al., 2018). Photobiont switches within a single fungal species have 

indeed been identified along both latitudinal and altitudinal gradients (Muggia et al., 2008; 

Fedrowitz et al., 2012; Vargas Castillo and Beck, 2012; Magain et al., 2017a; Dal Grande et al., 

2018). 

Although community scale patterns of photobiont diversity are most likely influenced by the 

environment, few molecular studies have so far addressed ecological segregation between closely 
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related lichen photobionts. Distinguishing the influence of different ecological factors on 

photobiont populations or on mycobiont selectivity is complicated by the fact that many ecological 

factors tend to be strongly intercorrelated. In green algal lichens the role of habitat or substratum 

as a determinant of the photobiont type seems to vary among different lichens and environments 

(Beck et al., 2002; Blaha et al., 2006; Muggia et al., 2008, 2013; Leavitt et al., 2013). For example, 

Peksa and Škaloud (2011) found that the green algal photobionts of the crustose lichen Lepraria 

(Lecanorales) were clearly differentiated based on their substrate and climatic preferences; the 

photobionts of the epiphytic pendulous lichen Ramalina menziesii showed significant structure 

according to the ecoregion and phorophyte species (Werth and Sork, 2014); and photobionts 

associating with the epigeic fruticose lichen Cladonia subtenuis exhibited population subdivision 

according to the ecoregion and habitat (Yahr et al., 2006). There is evidence that the substratum 

of lichenized fungi can play some role in determining photobiont association patterns (e.g. 

Elvebakk et al., 2008), although others have suggested that differences in substrate preferences do 

not have major influence (O'Brien et al., 2005, 2013; Stenroos et al., 2006; Otalaora et al., 2010). 

Ortiz-Alvarez et al. (2015) found that the selection of cyanobacterial photobionts in two closely 

related maritime species of Lichina (Lichinales) was linked to contrasting environmental conditions 

in their closely situated coastal niches. 

Several studies have indicated that species of lichen-forming fungi that only reproduce 

sexually are often less selective in their choice of photobionts compared to related fungi that 

reproduce via symbiotic diaspores (Blaha et al., 2006; Otalora et al., 2010, 2013; Fedrowitz et al., 

2012; Muggia et al., 2013, 2014; Leavitt et al., 2015). At the community scale, functional lichen 

guilds exist in which appropriate photobiont genotypes are shared among coexisting mycobiont 

species and in some cases even between fungi and bryophyte hosts (Costa et al., 2001; Rikkinen, 

2002, 2017; Rikkinen et al., 2002; Rikkinen and Virtanen, 2008; Lucking et al., 2009; Dal Grande et 

al., 2014; Cornejo and Scheidegger, 2016). Lichen guilds can involve mycobiont species with 

different dispersal modes: core species can effectively disperse photobionts in symbiotic 

diaspores, while sexually reproducing fringe species can benefit from this activity (Rikkinen, 2003). 

Our recent analysis of 252 Peltigera specimens from different habitats in Estonia revealed 31 

putative fungal taxa (OTUs), confirming that the genus includes many insufficiently known species 

(Juriado et al., 2017). Multivariate analysis revealed habitat-specific segregation between the 

different species along a gradient from humid eutrophic forests to dry oligotrophic forests and 

grasslands and along a soil pH gradient from alkaline soils of alvar grasslands to acidic soils of 
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conifer forests. The species diversity of Peltigera was the highest on roadsides and dunes and the 

lowest in alvar habitats, which supported a unique assemblage of undescribed taxa. Deciduous 

broad-leaved forests, too, included several undescribed or rare and red-listed species, 

demonstrating that many Peltigera species have narrow habitat requirements and are threatened 

by habitat loss and degradation (Juriado et al., 2017). 

Here we extend our treatment of Estonian Peltigera species through analysing a large new 

dataset of their Nostoc photobionts. The cyanobacterial photobiont (cyanobiont) of each lichen 

specimen was determined by using cyanobacterial tRNALeu (UAA) intron (trnL) sequences as a 

genetic marker. As trnL is easy to amplify and shows sufficient variability, especially in the P6b 

region, it has been widely employed for DNA based identification of symbiotic Nostoc genotypes 

(e.g. Paulsrud et al., 1998, 2000, 2001; Fedrowitz et al., 2011, 2012; O'Brien et al., 2005, 2013). In 

addition, the more conserved parts of trnL intron have been used to assess phylogenetic 

relationships, often alongside the 16S rRNA gene and other markers (e.g. Summerfield et al., 2002; 

Kaasalainen et al., 2015). 

To determine possible correlations between habitat specificity and photobiont selectivity, 

we compared photobiont diversity in Peltigera specimens collected from different habitat types 

and substrata, including grassland and forest types. We hypothesize that cyanobacterial 

photobionts are not randomly distributed along the complex environmental gradient, but their 

distributions correlate both with identity of the mycobiont as well as with growth conditions. 

 

 

2. Material and methods 

 

2.1. Study region and sampling 

Lichen specimens were collected in 2012–2016 from 107 localities in Estonia; some additional 

specimens from the collections of the University of Tartu (TU) were also included in the study. The 

study sites were distributed over the whole country and represented three wooded habitat types 

(oligotrophic forests, eutrophic forests, and park stands) and three grassland types (alvars, dunes, 

and roadsides). In addition to the habitat type, each lichen specimen was assigned one of three 

substratum types (tree, rock, and ground). For additional information on the field sites and 

sampling, see Juriado et al. (2017). 
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In ecological analyses, the substratum and the habitat variables were combined 

(‘ground_alvar’, ‘ground_dune’, ‘ground_eutrophic forest’, ‘tree_eutrophic forest’, 

‘rock_roadside’, ‘rock_eutrophic forest’ etc.). The habitats collectively represent a natural gradient 

of decreasing atmospheric humidity from grasslands to mesotrophic forest, and increasing soil pH, 

from acidic soils of oligotrophic forest to basic alvar grassland soils. At each study site, up to three 

specimens of each morphologically distinguishable Peltigera taxon were collected for DNA 

analysis. Phylogenetic analyses of Internal Transcribed Spacer (ITS) sequences allowed to delimit 

31 putative Peltigera taxa (OTUs) of 252 Peltigera specimens, some of them undescribed (e.g. P. 

“neorufescens”, P. “fuscoponojensis”, P. “neocanina”, Juriado et al., 2017). 

 

2.2. Molecular data 

Well-developed lobes of Peltigera thalli without visible symptoms of fungal infection were 

selected for molecular analyses. For DNA extraction, tiny thallus fragments containing both the 

cyano- and mycobiont from terminal parts of the lobes were placed under a dissecting 

microscope. DNA was extracted using the GeneJET Genomic DNA Purification Kit (Thermo 

Scientific) following the manufacturer's protocol for Gram-Negative Bacteria. Amplification of 

cyanobacterial trnL was performed with the primer pair tRNA Leu outF and tRNA Leu outR 

(Paulsrud and Lindblad, 1998). The amplification reaction was prepared for a 50-μl final volume 

containing 2 μl genomic DNA, 37.5 μl of sterile distilled water, 5 μl of 10×reaction buffer, 1μl dNTP 

(10mM), 1 μl tRNALeu outF (50mM), 1 μl tRNALeu outR (50mM), 1.25 μl BSA (20mg/ml) (Thermo 

Scientific) and 1.25 μl Dynazyme II (2 U/μl) (Thermo Scientific). The heating cycle was the 

following: initial denaturation of 3minat 94 °C followed by 4 cycles of 30 s at 94 °C, 30 s at 55 °C, 

and 2minat 72 °C. This was followed by 26 cycles of 30 s at 94 °C, 30 s at 60 °C, and 2minat 72 °C, 

with a final extension of 10minat 72 °C. The amplification products were purified with the GeneJET 

PCR Purification Kit (Thermo Scientific). Sequencing was performed by Macrogen Inc. in Europe 

with the same primers. The chromatograms of all sequences were checked and aligned using the 

program CodonCode Aligner 6.0.2 (CodonCode Corporation, Dedham, MA, USA). The alignment of 

the entire tRNALeu intron sequences (354–374 bp) was used in the analyses. All newly obtained 

sequences are deposited in the European Nucleotide Archive (http:// www.ebi.ac.uk/ena/ 

data/view/LS998801-LS999057) (Table S1). The mycobiont ITS sequences of the same lichen 

sample are stored in the NCBI GenBank database (LT852805-LT853056) (Juriado et al., 2017). The 
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voucher specimens are deposited in the lichenological herbarium of the Natural History Museum 

at the University of Tartu (TU). 

 

2.3. Data analyses 

The program Network 5.0.0.1 (Bandelt et al., 1999) was used to reconstruct the median-joining 

networks of the Nostoc trnL genotypes based on nucleotide differences in the trnL sequences. The 

Nostoc genotypes are denoted by letters and numbers (Fig. 1). Different letters were assigned to 

genotypes that differ by a minimum of 6 nucleotides. To illustrate the associations between the 

cyanobiont trnL genotypes and the fungal OTUs, a bipartite interaction network was constructed 

using R 3.3.3 (R Core Team, 2017) and the ‘bipartite’ package (Dormann et al., 2008). By using the 

program DnaSP 5.10.01 (Librado and Rozas, 2009), the diversity of the Nostoc trnL genotypes 

among the substratum-habitat groups was calculated. 

Variation partitioning analysis (VPA) in the program package CANOCO 5 (ter Braak and 

Šmilauer, 2012; Šmilauer and Lepš, 2014) was employed to partition variation in the symbiotic 

Nostoc genotypes associated with the studied Peltigera samples. Rare Nostoc genotypes 

appearing only once or twice in the dataset were removed prior to analysis. Two subsets of 

explanatory variables (‘Mycobiont species’ and ‘Habitat’) were used to test the unique effects of 

both variable sets and the shared proportion of variation explaining the distribution of the Nostoc 

genotypes. ‘Mycobiont species’ represented 18 Peltigera taxa, including widely used traditional 

species and some undescribed taxa (i.e. P. “neorufescens”, P. “fuscoponojensis”, P. aff. 

“neocanina” according to Juriado et al., 2017, Table S1). The variable set ‘Habitat’ included the 

combined substratum and habitat variables. Significance was assessed using permutation tests.  

The symmetric co-correspondence analysis (symmetric CoCA, ter Braak and Schaffers, 2004) 

in the program package CANOCO 5 was used to relate two different kinds of biotic community (i.e. 

Peltigera taxa and Nostoc trnL genotypes) recorded over identical sets of locations. CoCA finds the 

ordination axes (gradients) along which the weighted co-variance among case scores for the two 

compared communities is maximized. Statistically significant compositional co-variation between 

the two communities is tested by the permutation test. Effectiveness of the ordination is 

expressed by eigenvalues (variance in the community matrix attributed to a particular axis) and by 

total inertia (sum of the eigenvalues or total “variance” in the species data). The environmental 

variables were used as supplementary variables to help describe the ecological gradients that 

were common for both communities. The delimitation of the mycobiont taxa follows the 
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description in Juriado et al. (2017). Rare taxa, appearing only once or twice in the dataset, and 

redundant specimens from the same site with identical mycobiont and photobiont sequences 

were removed prior to analysis. As a result, 22 Peltigera taxa were obtained, which were used in 

the first step of ordination analyses (Table S1). In the second step of ordination analysis, three taxa 

were excluded as the outliers. 

 

 

3. Results 

 

3.1. Distribution of Nostoc genotypes in different habitats 

In total, 244 Nostoc trnL sequences were obtained from the 252 sampled Peltigera specimens 

(Tables S1 and S2). Most of these sequences (229) had a Class 2 repeat motif in the P6b region 

(Costa et al., 2002; Kaasalainen et al., 2015) and represented 30 different Nostoc genotypes 

(genotypes A1–A23, B, C1–C3, D, J, K in Fig. 1). 

Fifteen sequences of Nostoc from four Peltigera species had a Class 1 repeat motif in the P6b 

region (Costa et al., 2002; Kaasalainen G, H in Fig. 1). Three Nostoc genotypes (B, A1 and A2) were 

very common and widely distributed, accounting for 24, 21 and 18 percent of all sequences, 

respectively. Nearly half (47%) of all Nostoc sequences, from less than 10 Peltigera thalli, belonged 

to the other genotypes, with 15 Nostoc genotypes found only once. 

Genotypes A1 and A2 were very similar, differing in only one nucleotide site (Fig. 1). These 

two genotypes, like many other highly similar Nostoc genotypes marked with letter A, were largely 

confined to terricolous Peltigera species. Genotype A1 was most commonly found in Peltigera 

specimens from alvars (37%), dunes (29%), and roadside grasslands (14%). Genotype A2 was most 

commonly found in Peltigera specimens from dunes (30%), oligotrophic forest (22%), and parks 

(18%). Genotypes A3 and A4 were found mostly, and genotypes A10, A14, A17 and A20, 

exclusively, in the lichens growing on alvar grasslands (Fig. 1). Genotypes A7, A12 and A16 were 

only found in lichens from dunes, and genotypes A5, A13 and A12 were only found from lichens 

from roadsides (Fig. 1). Nostoc genotype D was largely restricted to terricolous Peltigera species 

that grew in oligotrophic forests and on dunes (Fig. 1). 

A substantial majority (66%) of the sequences representing Nostoc genotype B were 

obtained from Peltigera specimens growing on mossy tree bases or on logs in eutrophic forests. 

Another 12% of these sequences were obtained from lichens of mossy rocks in park stands and 
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still another 12%, from lichens growing on ground in eutrophic forests. Also Nostoc genotypes C1, 

C2 and C3 were obtained from eutrophic forests and park stands, where they were mainly found 

in Peltigera taxa that grew on mossy rocks or ground (Fig. 1). Nostoc genotypes E, F, G, H with a 

Class 1 repeat motif in the P6b region, were found mostly in Peltigera species growing on the 

ground in dunes, parks, roadsides and oligotrophic forests as well as on mossy rocks in the same 

habitats (Fig. 1). 

Among all studied substrata in the different habitat types, the total number of symbiotic 

Nostoc genotypes was the largest in Peltigera species that grew on the ground in alvar grasslands 

and on dunes. However, the diversity values recorded for the roadsides as well as for the ground 

and rock in eutrophic forests were even slightly higher (Table 1). The smallest number of Nostoc 

genotypes and the lowest genotype diversity values were recorded for tree bases in eutrophic 

forests (Table 1). 

 

3.2. Distribution of Nostoc genotypes in different Peltigera taxa 

The bipartite interaction network (Fig. 2) shows associations between the different Peltigera 

species and different Nostoc genotypes. Nostoc genotype A1 was found in 13 different Peltigera 

taxa (OTUs), most frequently in P. “neorufescens” and P. rufescens (Table S1). Nostoc genotype A2 

was found from 15 different Peltigera taxa, most frequently in P. rufescens and P. canina s. lat. 

(Table S1). Most species of the Peltigera section Peltigera associated with these two genotypes, 

but also P. leucophlebia (section Chloropeltigera) and P. neckeri (section Horizontales), associated 

with the same two Nostoc genotypes (Table S1, Fig. 2). As a whole, all Nostoc genotypes assigned 

with letter A (A1–A23) had similar distributions among the same set of Peltigera species. 

Nostoc genotype B was found in eight different Peltigera taxa, most commonly P. 

polydactylon (section Polydactylon), P. praetextata, P. canina II and III, and P. aff. neocanina 

(section Peltigera). Nostoc genotype C2 was only found in P. degenii (section Peltigera) and P. 

neopolydactyla (section Polydactylon). Peltigera membranacea (section Peltigera) associated with 

Nostoc genotype C1 and P. hymenina (section Polydactylon) associated with genotypes C1 and C3. 

Nostoc genotype D was mostly found in P. extenuata and in one case in P. didactyla. Peltigera 

aphthosa and P. malacea (section Peltidea) always associated with Class 1 type Nostoc genotypes 

(E and F, respectively), and the sole specimen of P. collina had its own, unique Nostoc genotype. 

(Table S1, Fig. 2). 
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3.3. Relationships between Peltigera taxa, Nostoc genotypes and ecological factors 

The results of variation partitioning analysis (VPA) showed that the two variable sets (‘Mycobiont 

identity’ and ‘Habitat’) together explained 65.3% of the variation in the symbiotic Nostoc 

genotypes associated with different Peltigera taxa (Table 2). The identity of mycobiont species was 

the most important factor, explaining 45.6% in the total variation. Of the total variation, 7.2% was 

explained by the habitat, while the co-effect of mycobiont identity and habitat type explained 

12.6% of the total variation. 

Permutation tests revealed that the relationship between the Peltigera taxa and symbiotic 

Nostoc genotypes in symmetric co-correspondence analysis CoCa was significant (p=0.004) for all 

ordination axes. The cross-correlation values of the first two ordination axes were 0.91 and 0.94 

and the corresponding eigenvalues were 0.71 and 0.59, respectively. The total inertia values (the 

sum of all eigenvalues) for the Peltigera taxa and the Nostoc genotypes were 11.2 and 12.5, 

respectively. The response scores are presented in the dual ordination diagrams of the CoCa axes 

of Fig. 3. Also the environmental variables are presented as overlays on the subplots. 

Peltigera degenii (Fig. 3, subplot A) occurred in eutrophic forests and park stands and 

associated with Nostoc genotype C2 (Fig. 3, subplot B). Peltigera membranacea and P. hymenina 

occurred mainly on ground or mossy stones in eutrophic forests (Fig. 3, subplot A) and associated 

most frequently with Nostoc genotypes C1 and C3, respectively (Fig. 3, subplot B). As these three 

Peltigera species differed clearly from all the rest with respect to both habitat preferences and 

cyanobiont composition (Figs. 1 and 3), they were excluded from the next step of the ordination 

analysis (Fig. 4). 

Also in the second CoCA analysis, permutation tests revealed that the relationship between 

the Peltigera taxa and symbiotic Nostoc genotypes was significant (p=0.003) for all ordination 

axes. The cross-correlation values of the first two ordination axes were 0.89 and 0.78 and the 

corresponding eigenvalues were 0.65 and 0.36, respec tively. The total inertia values for the 

Peltigera taxa and for the Nostoc genotypes were 10.7 and 12.1, respectively. The response scores 

are presented in the dual ordination diagrams of the CoCa axes of Fig. 4. Also the environmental 

variables are presented as overlays on the sub-plots. 

Peltigera polydactylon grew on mossy tree trunks in eutrophic forests (Fig. 4, subplot A) and 

associated only with Nostoc genotype B (Fig. 4, subplot B). Also P. aff. “neocanina”, P. praetextata, 

P. canina II, P. canina III and P. didactyla II grew mainly on tree bases and mossy rocks in eutrophic 

forests (Fig. 4, subplot A) and associated with the same Nostoc genotype B (Fig. 3, subplot B). 
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Peltigera extenuata grew on soil in oligotrophic forests and on dunes (Fig. 4, subplot A) and always 

associated with its own Nostoc genotype D. 

Most terricolous Peltigera taxa that grew in park stands, oligotrophic forests, dunes, and 

roadsides, incl. P. canina I, P. didactyla I and III, P. neckeri (Fig. 4, subplot A), associated mostly 

with a group of closely related Nostoc genotypes, most commonly the frequent genotype A2, but 

also A1, A3, A9 and A12 (Fig. 4, subplot B). Peltigera “fuscoponojensis”, P. ponojensis I and II, and 

P. rufescens (Fig. 4, subplot A) associated with the same group of closely related Nostoc 

genotypes, most commonly the frequent genotype A1 (Fig. 4, subplot B). Peltigera “neorufescens” 

and P. “neorufescens” agg. III grew only on alvar grasslands (Fig. 4, subplot A) and always 

associated with their own distinct selection of Nostoc genotypes (Fig. 4, subplot B). 

 

 

4. Discussion 

 

The degree of photobiont specificity of cyanolichen-forming fungi belonging to different 

taxonomic groups has been extensively studied. For cyanolichens with Nostoc cyanobionts, the 

results have been quite variable depending on the set of taxa studied (e.g. Paulsrud et al., 2000; 

Myllys et al., 2007; Elvebakk et al., 2008; Otalora et al., 2010; Fedrowitz et al., 2012; Ortiz-Alvarez 

et al., 2015; Magain et al., 2017a,b). Some Peltigera species seem to be highly specialized and only 

associate with one or a few selected photobiont genotypes, while others are more promiscuous 

and associate with a range of different Nostoc genotypes (e.g. Paulsrud et al., 1998, 2001; O'Brien 

et al., 2005, 2013; Miadlikowska et al., 2014; Zuniga et al., 2015; Magain et al., 2017a; Chagnon et 

al., 2018). Some widely distributed Peltigera species can associate with different Nostoc 

cyanobionts in different parts of their range (Manoharan-Basil et al., 2016; Magain et al., 2017a). 

Thus, photobiont specificity may often be scale-dependent, and a strict specificity detected at a 

local scale does not necessarily hold on larger geographical scales (Magain et al., 2017a; Lu et al., 

2018). These general patterns were also evident in our data set, with some Estonian Peltigera 

species (e.g. P. ponojensis, P. rufescens, P. neckeri) associated with several Nostoc genotypes while 

other species (e.g. P. aphthosa, P. malacea, P. extenuata, P. polydactylon) were always confined to 

one specific Nostoc genotype. 

Many of the Nostoc trnL genotypes detected in Estonian Peltigera specimens are new; 

others have previously been found from other parts of Europe. For example, the three Nostoc 
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genotypes (A1, A2, B) that were most frequently found in Estonia were previously known from 

other regions. According to the sequences in GenBank, Nostoc genotypes A1 and A2 have 

previously been found in cephalodia of Peltigera leucophlebia in southern Norway, and in Peltigera 

canina in Spain and in Poland; Nostoc genotype A2 has been found also in a Peltigera rufescens 

specimen in southern Finland (Table S3). Nostoc genotype B has been detected repeatedly in 

different Peltigera species in Europe, typically in taxa that grow on forest soil, rotten logs, or 

bryophyte covered tree trunks (Table S3). Even more interestingly, sequences of identical Nostoc 

cyanobionts have also been found in western North America and East Asia, indicating that this 

Nostoc genotype is widely distributed in suitable habitats across the boreal and temperate zones 

of the northern hemisphere. Also the rare Nostoc genotypes, for example Nostoc genotype F, 

which was found in Peltigera malacea specimens in Estonia, has previously been detected in the 

same Peltigera species in central Finland (Kaasalainen et al., 2015). Nostoc genotype K from 

Peltigera collina has previously been found in the same species in Scotland and has also been 

cultured from Lobaria pulmonaria and epiphytic mosses in central Finland (Rikkinen et al., 2002; 

Fedrowitz et al., 2012). Nostoc genotype E from Peltigera aphthosa specimens has previously been 

found in Nephroma arcticum in northern Finland (Fedrowitz et al., 2012). 

One may expect that many of the novel Nostoc genotypes now reported from Estonia are 

more widely distributed than presently known. Sampling in most previous studies has mainly 

focused on the muscicolous Peltigera species of boreal forests and bordering temperate and 

subalpine habitats, while the terricolous Peltigera communities of calcareous soils have not 

received equal attention. Hence, the Nostoc cyanobionts of the lichens of such habitats are 

probably underrepresented in GenBank and other databases. This finding is in accordance with the 

overall bioclimatic conclusions of Magain et al. (2017a) and suggests co-specialization between 

certain mycobionts and cyanobionts that are both specifically adapted to living on calcareous soils 

in temperate regions. 

Our current findings demonstrate that mycobiont identity is the most important factor 

determining the presence of a specific Nostoc genotype within the Peltigera thallus. However, also 

an independent effect of the habitat was detected. The habitat specific spectra of different 

Peltigera taxa in different habitat types explained a major proportion of variation in the 

distribution of symbiotic Nostoc genotypes. For example, P. canina II and III, growing on tree bases 

and logs, were more likely to associate with Nostoc genotype B than with any of the other Nostoc 

genotypes that were typically found in soil-dwelling members of the Peltigera canina group. A 
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similar pattern of substrate specific selectivity was also detected in P. didactyla s. lato. Thus, 

specimens of P. didactyla II growing on mossy logs or rock in forests associated with Nostoc 

genotype B, while terricolous specimens of P. didactyla I and III housed different Nostoc genotypes 

(Fig. 4). Our results indicate that some groups of Nostoc genotypes are largely confined to specific 

habitat types (e.g. grasslands versus forests) and/or certain substrata (e.g. ground versus tree 

bases). Such symbionts are shared between closely related fungal taxa, but also between distantly 

related species representing different sections of the genus Peltigera. For example, in xerophytic 

habitats there was rampant cyanobiont sharing, not only among terricolous taxa of the section 

Peltigera (e.g. P. ponojensis and P. rufescens), but also between ecologically similar species from 

other sections (P. neckeri from Horizontales and P. leucophlebia from Chloropeltigera). Another 

such mixed group of Peltigera species preferred mesic forests and centered on a group of closely 

related Nostoc genotypes (genotypes C1-C3, Figs. 2 and 3). Their cyanobionts were never found 

from among the other Peltigera species in the region. As a further example, Nostoc genotype B 

was common in Peltigera species that grew on mossy tree bases or logs in shaded forest habitats 

(Figs. 2 and 4). Peltigera polydactylon (section Polydactylon) relied on this Nostoc genotype, and P. 

praetextata and several other taxa of the section Peltigera also frequently housed the same 

cyanobiont. 

The habitat specific selection of the trnL Nostoc genotypes found in this study indicates the 

presence of a guild structure similar to that found in many other cyanolichens (Rikkinen et al., 

2002; Myllys et al., 2007; Elvebakk et al., 2008; Kaasalainen et al., 2013; O'Brien et al., 2013; 

Joneson and O'Brien, 2017) and green algal lichens (Beck et al., 1998; Peksa and Škaloud, 2011; Dal 

Grande et al., 2014). Photobiont-mediated guilds are communities of lichenized fungi often 

occurring in the same habitat, and are horizontally linked through photobiont sharing (Rikkinen, 

2003; Dal Grande et al., 2014). In Estonia, certain Nostoc genotypes were shared by Peltigera 

species that only occurred in mesic forests, while others were shared by species growing on 

xerophytic open grasslands. Such division of the photobiont association according to the habitat 

and substratum type indicates that the guild structure is linked not only to the environmental 

requirements of mycobionts but also to those of the Nostoc cyanobionts. On a functional level, 

some lichen guilds have been suggested to involve two types of mycobionts: core species that 

effectively disperse photobionts in their symbiotic diaspores, and fringe species that exploit these 

photobionts but mainly disperse via fungal spores. Thus, core species can effectively maintain a 

viable population of photobionts at the local scale, and these photobionts are also exploited and 
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incorporated into fringe species via horizontal transmission (Rikkinen et al., 2002; Rikkinen, 2003; 

Dal Grande et al., 2014). Considering the common occurrence of Nostoc genotype B in Estonian 

forests, P. praetextata, which often produces symbiotic diaspores (phyllidia), may possibly 

function as a core species. Other Peltigera species, which also depend on Nostoc genotype B but 

only reproduce via ascospores, may behave as fringe species that directly benefit from 

cyanobionts dispersed by P. praetextata. 

Ramirez-Fernandez et al. (2013) reported that in the Chilean Patagonian region (South 

America), the diversity of Peltigera cyanobionts was higher in native forests with low or medium 

disturbance intensity than in grasslands with high disturbance intensity. When comparing the 

diversity of the symbiotic Nostoc genotype between different habitats and substrata in Estonia, 

high diversity of Nostoc genotypes associated with Peltigera taxa was found in many different 

habitats: on ground in roadside grasslands, on dunes or eutrophic forests, and on mossy rocks in 

eutrophic forests (Table 1). 

A comparatively high diversity of Nostoc genotypes was found also associating with Peltigera 

specimens collected from alvar grasslands. The Estonian grasslands are usually characterized by 

high soil pH and they support high diversity of different Peltigera taxa (Juriado et al., 2017). The 

alvars are the most peculiar and extreme grassland habitats in this region, both with respect to soil 

type and their properties (Koster and Kolli, 2016) and land-use history (Eriksson et al., 2002; Partel 

et al., 2007). Thin-soil alvars typically support biological soil crusts with highly specific lichen 

communities (Leppik et al., 2013, 2015; Budel et al., 2014). Two Peltigera taxa (P. “neorufescens” 

agg.) that were typically found in alvar grasslands (Juriado et al., 2017) are phylogenetically well 

defined (Miadlikowska et al., 2003; Juriado et al., 2017) and will potentially represent new species. 

In addition to their preference for nutrient-rich calcareous soil, they seem only to associate with a 

specific group of Nostoc genotypes (Fig. 4). 

A comparatively low diversity of Nostoc genotypes was found in Peltigera specimens 

collected from mossy tree bases and logs (Table 1). Accordingly, Fedrowitz et al. (2011) found only 

five closely related Nostoc genotypes in 232 epiphytic Nephroma thalli representing three 

different species. Such findings may suggest that the pool of compatible Nostoc genotypes on tree 

trunks or logs may be more limited compared to those occurring on moss-covered rocks, mossy 

ground or bare soil (Zuniga et al., 2017). On the other hand, epiphytic bryophytes on tree trunks 

and logs may often act as a reservoir of compatible Nostoc genotypes (e.g. Rikkinen et al., 2002). 

For example, epiphytic mats of the liverwort Frullania asagrayana harbors lichen symbiotic 
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Rhizonema strains and seems to provide nursery beds for the establishment and growth of 

Erioderma pedicellatum (Cornejo and Scheidegger, 2016). 

In conclusion, we established that mycobiont identity was the most important factor 

determining the presence of specific Nostoc genotypes within the Peltigera thalli. However, the 

pattern of cyanobiont selectivity also correlated with environmental variables. In eutrophic and 

mesic forests the widespread and prolific sharing of some Nostoc genotypes between several 

different Peltigera taxa indicates that guild interactions are important in the habitat ecology of 

these lichens. The same applies to certain groups of terricolous Peltigera species on calcareous 

soils, including the two Peltigera species that are adapted to the unique environmental conditions 

of alvar grasslands. As several phylogenetically defined taxa (Juriado et al., 2017) showed a distinct 

pattern of Nostoc genotype specificity, which was also in correlation with habitat conditions, our 

findings of symbiont specificity may help delimit the undescribed species. 
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TABLES 

 

Table 1. Number of Peltigera taxa, number of Nostoc sequences and genotypes, and genotype 

diversity (Hd) in combined substratum and habitat groups. Abbrevations of combined variable of 

substratum and habitat: ‘Ground_alvar’=ground in alvars, ‘Ground_dune’=ground on dunes, 

‘Ground_road’=ground in roadside grasslands, ‘Ground_eutr’=ground in eutrophic forests, 

‘Ground_oligotr’=ground in oligotrophic forests, ‘Ground_park’=ground in park stands, 

‘Rock_eutr’=rocks in eutrophic forests, ‘Rock_park’=rocks in park stands, ‘Tree_eutr’=trees in 

eutrophic forests. 

 

Substratum and habitat   No. of Peltigera taxa   No. of Nostoc seqences   No. of Nostoc genotypes       Hd 

 

Ground_alvar   10   40  10      0.75 

Ground_dune   15   43  10  0.79 

Ground_road   12   26  7  0.83 

Ground_eutr   12   19  8  0.82 

Ground_oligotr   9   24   7  0.76 

Ground_park    8   14  5 0.67 

Rock_eutr    8   9         5 0.81 

Rock_park    8   10       5 0.75 

Tree_eutr   7   42  4 0.14 
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Table 2. Results from variation partitioning analysis (VPA), partitioning variance in Nostoc 

genotypes (presence/absence) found in Peltigera onto two variable sets of ‘Mycobiont species’ 

and ‘Habitat’. ‘Mycobiont species’ – 18 taxa of Peltigera (see Supplementary Table 1), ‘Habitat’ – 

the combined variables of substratum and habitat (see Table 1). 

 

Component               Variance explained      % variance explained % of total variation       F         P 

Unique effect of 

‘Mycobiont species’ 4.30                   69.8              45.6                5     0.001 

Unique effect of 

‘Habitat’  0.67                    11.0                7.2                1.5  0.001 

Shared effect of 

‘Mycobiont species’ 

and ‘Habitat’  1.18                    19.2               12.6                4.7  0.001 

Total explained  6.15                   100               65.3 

All variation   9.42                  100 

 

F – F-criterion value, P – significance level. 
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FIGURES 

 

 

 

 

Fig. 1. Nostoc trnL genotype networks. trnL sequences with Class 1 (small network on lower left) 

and Class 2 (large, on right) P6b regions were analysed separately. The number of single 

nucleotide differences is shown on connecting lines; genotypes separated by six or more 

differences are connected via dashed lines and denoted by different letters. The size of each pie 

chart is proportional to the number of specimens (1–59); the colours of the slices represent 

different habitats and substrata (light shades indicate ground and dark shades indicate rock). 
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Fig. 2. A bipartite interaction network of Peltigera taxa (on left) and cyanobiont trnL genotypes (on 

right). Different sections of Peltigera (Miadlikowska and Lutzoni, 2000) and the groups ‘canina’ 

and ‘rufescens’ within the section Peltigera (Juriado et al., 2017) are separated by using different 

colours. 
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Fig. 3. Symmetric co-correspondence (CoCA) analysis of 22 Peltigera taxa (subplot A) and 26 

symbiotic Nostoc genotypes (subplot B). The subplots of the dual diagram show the first two axes 

(axes 1 and 2), and the environmental descriptors are passively projected into the subplots as 

filled triangles. Abbreviations of the substrata ‘gr’=ground, ‘ro’=rock, ‘tr’=tree. Abbreviations of 

the habitat types ‘alv’=alvar, ‘dune’=dunes, ‘eutr’=eutrophic forests, ‘oligotr’=oligotrophic forests, 

‘park’=park stands, ‘road’=roadside grasslands. Abbreviations of the Peltigera taxa (see Table S1) 

‘can’=P. canina, ‘did’=P. didactyla, ‘fuscopon’=P. “fuscoponojensis”, ‘neoruf’=P. “neorufescens”, 

‘rufe’=P. rufescens. Different sections of Peltigera (Miadlikowska and Lutzoni, 2000) and the 

groups ‘canina’ and ‘rufescens’ within the section Peltigera (Juriado et al., 2017) are separated by 

using different colours as in Fig. 2. 
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Fig. 4. Symmetric co-correspondence (CoCA) analysis of 19 Peltigera taxa (subplot A) and 24 

symbiotic Nostoc genotypes (subplot B). The subplots of the dual diagram show the first two axes 

(axes 1 and 2), and the environmental descriptors are passively projected into the subplots as 

filled triangles. Abbreviations of the substrata and habitat types as in Fig. 3. Different sections of 

Peltigera (Miadlikowska and Lutzoni, 2000) and the groups ‘canina’ and ‘rufescens’ within the 

section Peltigera (Juriado et al., 2017) are separated by using different colours as in Fig. 2. 

 

 

 

 

 

 


