10 research outputs found

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types

    MetOp/AVHRR snow detection method for meteorological applications

    No full text
    Abstract Snow cover plays a significant role in the weather and climate system by affecting the energy and mass transfer between the surface and the atmosphere. It also has far-reaching effects on ecosystems of snow-covered areas. Therefore, global snow-cover observations in a timely manner are needed. Satellite-based instruments can be utilized to produce snow-cover information that is suitable for these needs. Highly variable surface and snow-cover features suggest that operational snow extent algorithms may benefit from at least a partly empirical approach that is based on carefully analyzed training data. Here, a new two-phase snow-cover algorithm utilizing data from the Advanced Very High Resolution Radiometer (AVHRR) on board the MetOp satellites of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) is introduced and evaluated. This algorithm is used to produce the MetOp/AVHRR H32 snow extent product for the Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The algorithm aims at direct detection of snow-covered and snow-free pixels without preceding cloud masking. Pixels that cannot be classified reliably to snow or snow-free, because of clouds or other reasons, are set as unclassified. This reduces the coverage but increases the accuracy of the algorithm. More than four years of snow-depth and state-of-the-ground observations from weather stations were used to validate the product. Validation results show that the algorithm produces high-quality snow coverage data that may be suitable for numerical weather prediction, hydrological modeling, and other applications

    The Atmospheric Imaging Mission for Northern Regions: AIM-North

    No full text
    AIM-North is a proposed satellite mission that would provide observations of unprecedented frequency and density for monitoring northern greenhouse gases (GHGs), air quality (AQ) and vegetation. AIM-North would consist of two satellites in a highly elliptical orbit formation, observing over land from ∌40°N to 80°N multiple times per day. Each satellite would carry a near-infrared to shortwave infrared imaging spectrometer for CO2, CH4, and CO, and an ultraviolet-visible imaging spectrometer for air quality. Both instruments would measure solar-induced fluorescence from vegetation. A cloud imager would make near-real-time observations, which could inform the pointing of the other instruments to focus only on the clearest regions. Multiple geostationary (GEO) AQ and GHG satellites are planned for the 2020s, but they will lack coverage of northern regions like the Arctic. AIM-North would address this gap with quasi-geostationary observations of the North and overlap with GEO coverage to facilitate intercomparison and fusion of these datasets. The resulting data would improve our ability to forecast northern air quality and quantify fluxes of GHG and AQ species from forests, permafrost, biomass burning and anthropogenic activity, furthering our scientific understanding of these processes and supporting environmental policy

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types. Supplemental files are attached below

    Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites - Metadata

    No full text
    Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset contains metadata information about surface energy budget components measured at 64 tundra and glacier sites >60° N across the Arctic. This information was taken from the open-access repositories FLUXNET, Ameriflux, AON, GC-Net and PROMICE. The contained datasets are associated with the publication vegetation type as an important predictor of the Arctic Summer Land Surface Energy Budget by Oehri et al. 2022, and intended to support research of surface energy budgets and their relationship with environmental conditions, in particular vegetation characteristics across the terrestrial Arctic

    Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites - Surface energy budget componenent data

    No full text
    Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset comprises harmonized, standardized and aggregated in-situ observations of surface energy budget components measured at 64 sites on vegetated and glaciated sites north of 60° latitude, in the time period from 1994 till 2021. The surface energy budget components include net radiation, sensible heat flux, latent heat flux, ground heat flux, net shortwave radiation, net longwave radiation, surface temperature and albedo, which were aggregated to daily mean, minimum and maximum values from hourly and half-hourly measurements. Data were retrieved from the monitoring networks FLUXNET, AmeriFlux, AON, GC-Net and PROMICE

    Literature synthesis data of surface energy fluxes and environmental drivers from Arctic vegetation and glacier sites

    No full text
    Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the data generated in a literature synthesis, covering 358 study sites on vegetation or glacier (>=60°N latitude), which contained surface energy budget observations. The literature synthesis comprised 148 publications searched on the ISI Web of Science Core Collection

    Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites

    No full text
    Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In-situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. Therefore, we here provide four datasets comprising: 1. Harmonized, standardized and aggregated in situ observations of SEB components at 64 vegetated and glaciated sites north of 60° latitude, in the time period 1994-2021 2. A description of all study sites and associated environmental conditions, including the vegetation types, which correspond to the classification of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). 3. Data generated in a literature synthesis from 358 study sites on vegetation or glacier (>=60°N latitude) covered by 148 publications. 4. Metadata, including data contributor information and measurement heights of variables associated with Oehri et al. 2022

    Harmonized in-situ observations of surface energy fluxes and environmental drivers at 64 Arctic vegetation and glacier sites - Environmental conditions

    No full text
    Despite the importance of surface energy budgets (SEBs) for land-climate interactions in the Arctic, uncertainties in their prediction persist. In situ observational data of SEB components - useful for research and model validation - are collected at relatively few sites across the terrestrial Arctic, and not all available datasets are readily interoperable. Furthermore, the terrestrial Arctic consists of a diversity of vegetation types, which are generally not well represented in land surface schemes of current Earth system models. This dataset describes the environmental conditions for 64 tundra and glacier sites (>=60°N latitude) across the Arctic, for which in situ measurements of surface energy budget components were harmonized (see Oehri et al. 2022). These environmental conditions are (proxies of) potential drivers of SEB-components and could therefore be called SEB-drivers. The associated environmental conditions, include the vegetation types graminoid tundra, prostrate dwarf-shrub tundra, erect-shrub tundra, wetland complexes, barren complexes (≀ 40% horizontal plant cover), boreal peat bogs and glacier. These land surface types (apart from boreal peat bogs) correspond to the main classification units of the Circumpolar Arctic Vegetation Map (CAVM, Raynolds et al. 2019). For each site, additional climatic and biophysical variables are available, including cloud cover, snow cover duration, permafrost characteristics, climatic conditions and topographic conditions
    corecore