7 research outputs found

    Mechanics of the right whale mandible : full scale testing and finite element analysis

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 374 (2009): 93-103, doi:10.1016/j.jembe.2009.03.012.In an effort to better understand the mechanics of ship-whale collision and to reduce the associated mortality of the critically endangered North Atlantic right whale, a comprehensive biomechanical study has been conducted by the Woods Hole Oceanographic Institution and the University of New Hampshire. The goal of the study is to develop a numerical modeling tool to predict the forces and stresses during impact and thereby the resulting mortality risk to whales from ship strikes. Based on post-mortem examinations, jaw fracture was chosen as a fatal endpoint for the whales hit by a vessel. In this paper we investigate the overall mechanical behavior of a right whale mandible under transverse loading and develop a finite element analysis model of the bone. The equivalent elastic modulus of the cortical component of right whale mandible is found by comparing full-scale bending tests with the results of numerical modeling. The finite element model of the mandible can be used in conjunction with a vessel-whale collision event model to predict bone fracture for various ship strike scenarios.Funding for this work was provided by the National Science Foundation (Graduate Research Fellowship Program, Campbell-Malone), the National Oceanic and Atmospheric Administration (Right Whale Grants Program, award number NA04NMF4720402), and the Woods Hole Oceanographic Institution Ocean Life Institute

    Assessment of management to mitigate anthropogenic effects on large whales

    Get PDF
    Author Posting. © Society for Conservation Biology, 2012. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Conservation Biology 27 (2013): 121-133, doi:10.1111/j.1523-1739.2012.01934.x.United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n= 323), followed by natural causes (n= 248) and vessel strikes (n= 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality-driven conservation issues.We thank S. and H. Simmons for funding for this project

    Biocomposites and Mineralized Tissues

    No full text
    corecore