53 research outputs found

    States can fight growing economic inequality through lowering taxes on the poor, and stricter labor market policies.

    Get PDF
    While unemployment and levels of economic growth in the U.S. have returned to levels not seen since the onset of the financial crisis in 2008, inequality remains a significant problem. In new research, Megan E. Hatch and Elizabeth Rigby examine the role of state-level policies in reducing or increasing inequality. They find that inequality can be reduced through a combination of high taxes on the wealthy, low taxes on the poorest, and labor market regulations that are favorable to workers, such as minimum wages and an absence of right to work laws. Surprisingly, they also find that greater spending on the poor is associated with higher levels of income inequality

    Joint inference of CFC lifetimes and banks suggests previously unidentified emissions:Nature Communications

    Get PDF
    AbstractChlorofluorocarbons (CFCs) are harmful ozone depleting substances and greenhouse gases. CFC production was phased-out under the Montreal Protocol, however recent studies suggest new and unexpected emissions of CFC-11. Quantifying CFC emissions requires accurate estimates of both atmospheric lifetimes and ongoing emissions from old equipment (i.e. ‘banks’). In a Bayesian framework we simultaneously infer lifetimes, banks and emissions of CFC-11, 12 and 113 using available constraints. We find lifetimes of all three gases are likely shorter than currently recommended values, suggesting that best estimates of inferred emissions are larger than recent evaluations. Our analysis indicates that bank emissions are decreasing faster than total emissions, and we estimate new, unexpected emissions during 2014-2016 were 23.2, 18.3, and 7.8 Gg/yr for CFC-11, 12 and 113, respectively. While recent studies have focused on unexpected CFC-11 emissions, our results call for further investigation of potential sources of emissions of CFC-12 and CFC-113, along with CFC-11.</jats:p

    Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z~2

    Get PDF
    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z=1.70, MS1512-cB58 at z=2.73, SGAS J152745.1+065219 at z=2.76 and SGAS J122651.3+215220 at z=2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the H-alpha and [OII] emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z~2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3-7*10^9 M_sun, young ages ~ 100 Myr, little dust content E(B-V)=0.10-0.25, and star formation rates around 20-100 M_sun/yr. Compared to typical values for the galaxy population at z~2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z~2.Comment: 13 pages, 8 figures, Accepted to Ap

    Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    Full text link
    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (∼\sim1 kpc) X-ray emission in the soft band (0.5 - 2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation (∼\sim2.6-4 M_{\sun} yr−1^{-1}). The soft emission at circumnuclear scales (inner ∼\sim400 pc) originates from hot gas, with kT ∼\sim 0.7 keV, while the most extended thermal emission is cooler (kT ∼\sim 0.3 keV). We refine previous measurements of the extreme Fe Kα\alpha equivalent width in this source (EW = 2.5−1.0+2.6^{+2.6}_{-1.0} keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density (NH>1.25×1024N_{\rm H} > 1.25\times10^{24} cm−2^{-2}) and an intrinsic hard (2-10 keV) X-ray luminosity of ∼\sim3-8×1042\times 10^{42} erg s−1^{-1} (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe Kα\alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe Kα\alpha EWs (i.e., >>2 keV) in that they also contain ongoing star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring AGN.Comment: 11 pages, 8 figures, 4 tables. Accepted for publication in Ap

    Pet191 Is a Cytochrome c Oxidase Assembly Factor in \u3ci\u3eSaccharomyces cerevisiae\u3c/i\u3e

    Get PDF
    The twin-Cx9C motif protein Pet191 is essential for cytochrome c oxidase maturation. The motif Cys residues are functionally important and appear to be present in disulfide linkages within a large oligomeric complex associated with the mitochondrial inner membrane. The import of Pet191 differs from that of other twin-Cx9C motif class of proteins in being independent of the Mia40 pathway

    Quantifying contributions of chlorofluorocarbon banks to emissions and impacts on the ozone layer and climate

    Get PDF
    Chlorofluorocarbon (CFC) banks from uses such as air conditioners or foams can be emitted after global production stops. Recent reports of unexpected emissions of CFC-11 raise the need to better quantify releases from these banks, and associated impacts on ozone depletion and climate change. Here we develop a Bayesian probabilistic model for CFC-11, 12, and 113 banks and their emissions, incorporating the broadest range of constraints to date. We find that bank sizes of CFC-11 and CFC-12 are larger than recent international scientific assessments suggested, and can account for much of current estimated CFC-11 and 12 emissions (with the exception of increased CFC-11 emissions after 2012). Left unrecovered, these CFC banks could delay Antarctic ozone hole recovery by about six years and contribute 9 billion metric tonnes of equivalent CO2 emission. Derived CFC-113 emissions are subject to uncertainty, but are much larger than expected, raising questions about its sources

    Development of a new real-time PCR for the detection of pilchard orthomyxovirus (POMV) in apparently healthy fish

    Get PDF
    Pilchard orthomyxovirus (POMV) is a virus of concern to the Atlantic salmon aquaculture industry in Tasmania. First isolated from wild pilchards in southern Australia in 1998, the virus is now a recognised pathogen of farmed Atlantic salmon (Salmo salar) in Tasmania. While the current real-time PCR for POMV targets segment 5 of the viral genome, recent viral gene expression data suggests that other segments of the POMV genome presented higher transcription levels and thus may be better candidates for the early detection of the virus. This study aimed to design and begin validating a more sensitive reverse transcriptase real-time PCR (RT-qPCR) assay to detect POMV. Primers and probes were developed targeting two independent viral genes derived from segments 7 and 8, which presented higher transcription levels than segment 5 in both cell culture and infected fish. These were compared with the current POMV RT-qPCR. The POMV segment 8 assay had a higher analytical sensitivity than segment 7, detecting at least 1 plasmid copy μl−1, and was 10-fold more sensitive than both POMV segment 7 and 5 assays when analysing nucleic acid from a positive field sample. Both new assays also had high analytical specificity, detecting the 11 POMV isolates tested (inclusivity testing) and not amplifying nucleic acids from other viruses, including ISAV, a related orthomyxovirus. In the latent class model analysis, the diagnostic sensitivity of the segment 8 and 7 assays were higher than segment 5 in 93% and 92% of simulations, respectively. Seven samples (18.4%), all from subclinical fish infected with POMV, returned a positive result only with the segment 8 assay. Both new assays showed reproducible results when applied to aliquots of the same samples tested in three different laboratories. The new POMV segment 8 assay shows promising results as a surveillance tool for detecting POMV in fish without any symptoms.publishedVersio

    Evaluation of Non-destructive Molecular Diagnostics for the Detection of Neoparamoeba perurans

    Get PDF
    Peer reviewed paper. Citation: Downes, J. K., Rigby, M. L., Taylor, R. S., Maynard, B. T., MacCarthy, E., O’Connor, I., Marcos-Lopez M., Rodger H. D., Collins E., Ruane N. M. & Cook, M. T. (2017). Evaluation of Non-destructive Molecular Diagnostics for the Detection of Neoparamoeba perurans. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00061 Link: https://www.frontiersin.org/articles/10.3389/fmars.2017.00061/full DOI: https://doi.org/10.3389/fmars.2017.00061 Cited as per the open access policy of Frontiers Media SA.Amoebic gill disease (AGD) caused by Neoparamoeba perurans, has emerged in Europe as a significant problem for the Atlantic salmon farming industry. Gross gill score is the most widely used and practical method for determining AGD severity on farms and informing management decisions on disease mitigation strategies. As molecular diagnosis of AGD remains a high priority for much of the international salmon farming industry, there is a need to evaluate the suitability of currently available molecular assays in conjunction with the most appropriate non-destructive sampling methodology. The aims of this study were to assess a non-destructive sampling methodology (gill swabs) and to compare a range of currently available real-time polymerase chain-reaction (PCR) assays for the detection of N. perurans. Furthermore a comparison of the non-destructive molecular diagnostics with traditional screening methods of gill scoring and histopathology was also undertaken. The study found that all molecular protocols assessed performed well in cases of clinical AGD with high gill scores. A TaqMan based assay (protocol 1) was the optimal assay based on a range of parameters including % positive samples from a field trial performed on fish with gill scores ranging from 0 to 5. A higher proportion of gill swab samples tested positive by all protocols than gill filament biopsies and there was a strong correlation between gill swabs tested by protocol 1 and gross gill score and histology scores. Screening for N. perurans using protocol 1 in conjunction with non-destructive gill swab samples was shown to give the best results

    NuSTAR Spectroscopy of Multi-Component X-ray Reflection from NGC 1068

    Get PDF
    We report on observations of NGC1068 with NuSTAR, which provide the best constraints to date on its >10>10~keV spectral shape. We find no strong variability over the past two decades, consistent with its Compton-thick AGN classification. The combined NuSTAR, Chandra, XMM-Newton, and Swift-BAT spectral dataset offers new insights into the complex reflected emission. The critical combination of the high signal-to-noise NuSTAR data and a spatial decomposition with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N_H) reflector, none of the common Compton-reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection. A multi-component reflector with three distinct column densities (e.g., N_H~1.5e23, 5e24, and 1e25 cm^{-2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N_H components provide the bulk of the Compton hump flux while the lower N_H component produces much of the line emission, effectively decoupling two key features of Compton reflection. We note that ~30% of the neutral Fe Kalpha line flux arises from >2" (~140 pc), implying that a significant fraction of the <10 keV reflected component arises from regions well outside of a parsec-scale torus. These results likely have ramifications for the interpretation of poorer signal-to-noise observations and/or more distant objects [Abridged].Comment: Submitted to ApJ; 23 pages (ApJ format); 11 figures and 3 tables; Comments welcomed
    • …
    corecore