3,958 research outputs found

    Contraction blockers for graphs with forbidden induced paths.

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pâ„“-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    The Attraction of Foreign Manufacturing Investments: Investment Promotion and Agglomeration Economies

    Get PDF
    We study Japanese investments between 1980 and 1992 to assess the effectiveness of state promotion efforts in light of strong agglomeration economies in Japanese investment. Two policy variables are consistently shown to influence the location of investment - foreign trade zones and labor subsidies. We use simulations to explore the impact these policies had on the geographic distribution of Japanese investment. The simulations reveal that in aggregate promotion programs largely offset each other; however, unilateral withdrawal of promotion causes individual states to lose substantial amounts of foreign investment.

    Condominiums

    Get PDF

    The role of SLR and LLR in relativity

    Get PDF
    While General Relativity has been adopted as the standard theory of relativity, there are alternative theories, with important implications for gravitational physics, which can only be discounted with tests of sufficient accuracy. In addition to its contributions to lunar and solar system dynamics, Lunar Laser Ranging, in combination with other solar system data continues to refine some important limits. Satellite laser ranging tracking of geodetic satellites can provide similar tests, but the accuracy is usually limited by gravitational and nongravitational perturbations

    The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M31 Nova catalogue

    Full text link
    We present light curves from the novae detected in the long-term, M31 monitoring WeCAPP project. The goal of WeCAPP is to constrain the compact dark matter fraction of the M31 halo with microlensing observations. As a by product we have detected 91 novae benefiting from the high cadence and highly sensitive difference imaging technique required for pixellensing. We thus can now present the largest CCD and optical filters based nova light curve sample up-to-date towards M31. We also obtained thorough coverage of the light curve before and after the eruption thanks to the long-term monitoring. We apply the nova taxonomy proposed by Strope et al. (2010) to our nova candidates and found 29 S-class novae, 10 C-class novae, 2 O-class novae and 1 J-class nova. We have investigated the universal decline law advocated by Hachichu and Kato (2006) on the S-class novae. In addition, we correlated our catalogue with the literature and found 4 potential recurrent novae. Part of our catalogue has been used to search for optical counter-parts of the super soft X-ray sources detected in M31 (Pietsch et al. 2005). Optical surveys like WeCAPP, and coordinated with multi-wavelength observation, will continue to shed light on the underlying physical mechanism of novae in the future.Comment: 15 pages, 15 figures, 7 tables, A&A accepted for publication. The appendix is stored in the Data Conservanc

    An improved model for the Earth's gravity field

    Get PDF
    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy

    The Management of Defense

    Get PDF
    • …
    corecore