56 research outputs found

    Higher spin algebras and large N=4\mathcal{N}=4 holography

    Full text link
    A new family of higher spin algebras that arises upon restricting matrix extensions of shs[λ]\mathfrak{shs}[\lambda] is found. We identify coset CFTs realising these symmetry algebras, and thus propose new higher spin-CFT dual pairs. These higher spin theories arise naturally as a subsector of string theory on AdS3×S3×S3×S1{\rm AdS}_3\times {\rm S}^3 \times {\rm S}^3 \times {\rm S}^1 for specific ratios of the radii of the two spheres.Comment: 22 page

    High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics

    Get PDF
    We present a hybrid imaging/timing detector for force sensitive inertial measurements designed for measurements on positronium, the metastable bound state of an electron and a positron, but also suitable for applications involving other low intensity, low energy beams of neutral (antimatter)-atoms, such as antihydrogen. The performance of the prototype detector was evaluated with a tunable low energy positron beam, resulting in a spatial resolution of approximate t

    Development of a detector for inertial sensing of positronium at AEgIS (CERN)

    Get PDF
    The primary goal of the AEgIS collaboration at CERN is to measure the gravitational acceleration on neutral antimatter. Positronium (Ps), the bound state of an electron and a positron, is a suitable candidate for a force-sensitive inertial measurement by means of deflectometry/interferometry. In order to conduct such an experiment, the impact position and time of arrival of Ps atoms at the detector must be detected simultaneously. The detection of a low-velocity Ps beam with a spatial resolution of (88 ± 5) Όm was previously demonstrated [1]. Based on the methodology employed in [1] and [2], a hybrid imaging/timing detector with increased spatial resolution of about 10 Όm was developed. The performance of a prototype was tested with a positron beam. The concept of the detector and first results are presented

    Control system for ion Penning traps at the AEgIS experiment at CERN

    Get PDF
    The AEgIS experiment located at the Antiproton Decelerator at CERN aims to measure the gravitational fall of a cold antihydrogen pulsed beam. The precise observation of the antiatoms in the Earth gravitational field requires a controlled production and manipulation of antihydrogen. The neutral antimatter is obtained via a charge exchange reaction between a cold plasma of antiprotons from ELENA decelerator and a pulse of Rydberg positronium atoms. The current custom electronics designed to operate the 5 and 1 T Penning traps are going to be replaced by a control system based on the ARTIQ & Sinara open hardware and software ecosystem. This solution is present in many atomic, molecular and optical physics experiments and devices such as quantum computers. We report the status of the implementation as well as the main features of the new control system

    Hybrid imaging and timing ps laser excitation diagnostics for pulsed antihydrogen production

    Get PDF
    open48siIn this work we present a hybrid detection method providing simultaneous imaging and timing information suitable for fully monitoring positronium (Ps) formation, its laser excitation, and its spatial propagation for the first trials of pulsed antihydrogen (H) production through a charge-exchange reaction with trapped antiprotons (p). This combined method, based on the synchronous acquisition of an EJ-200 scintillation detector and a microchannel plate (MCP) detector with a dual readout (phosphor screen image and electrical pick-up signal), allows all relevant events in the experiment to be accurately determined in time while allowing high resolution images of e+ from Ps laser photodissociations to be acquired. The timing calibration process of the two detectors discussed in details as well as the future perspectives opened by this method.openCaravita R.; Antonello M.; Belov A.; Bonomi G.; Brusa R.S.; Caccia M.; Camper A.; Castelli F.; Comparat D.; Consolati G.; Demetrio A.; Di Noto L.; Doser M.; Fani M.; Ferragut R.; Gerber S.; Giammarchi M.; Gligorova A.; Gloggler L.T.; Guatieri F.; Haider S.; Hinterberger A.; Khalidova O.; Krasnicky D.; Lagomarsino V.; Malbrunot C.; Mariazzi S.; Matveev V.; Muller S.R.; Nebbia G.; Nedelec P.; Oberthaler M.; Oswald E.; Pagano D.; Penasa L.; Petracek V.; Prelz F.; Rienacker B.; Rohne O.M.; Rotondi A.; Sandaker H.; Santoro R.; Testera G.; Tietje I.; Toso V.; Wolz T.; Zimmer C.; Zurlo N.Caravita, R.; Antonello, M.; Belov, A.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Camper, A.; Castelli, F.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Fani, M.; Ferragut, R.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gloggler, L. T.; Guatieri, F.; Haider, S.; Hinterberger, A.; Khalidova, O.; Krasnicky, D.; Lagomarsino, V.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Muller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Oswald, E.; Pagano, D.; Penasa, L.; Petracek, V.; Prelz, F.; Rienacker, B.; Rohne, O. M.; Rotondi, A.; Sandaker, H.; Santoro, R.; Testera, G.; Tietje, I.; Toso, V.; Wolz, T.; Zimmer, C.; Zurlo, N

    Techniques for production and detection of 23S positronium

    Get PDF
    In this work, we show recent measurements of 23S long-lived positronium production via spontaneous decay from the 33P level. The possibility to tune the velocity of the 23S positronium, excited following this scheme, is presented. In the light of these results, we discuss the use of the 33P→23S transition to realize a monochromatic pulsed 23S positronium beam with low angular divergence. Preliminary tests of 23S beam production are presented. The possibility to overcome the natural 33P→23S branching ratio via stimulated emission, and thus increasing the intensity of the 23S source, is also shown. A position-sensitive detector for a pulsed beam of positronium, with spatial resolution of ≈ 90 ÎŒm, is finally described in view of its possible application for the spatial characterization of the 23S beam

    Synthesis of Optically Active l

    No full text

    Anisotropy and Dynamic Ranges in Effective Properties of Sheared Nematic Polymer Nanocomposites

    No full text
    Nematic, or liquid-crystalline, polymer nanocomposites (NPNCs) are composed of large aspect ratio, rod-like or platelet, rigid macromolecules in a matrix or solvent, which itself may be aqueous or polymeric. NPNCs are engineered for high-performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. The rods or platelets possess enormous property contrasts relative to the solvent, yet the composite properties are strongly affected by the orientational distribution of the nanophase. Nematic polymer film processing flows are shear-dominated, for which orientational distributions are well known to be highly sensitive to shear rate and volume fraction of the nematogens, with unsteady response being the most expected outcome at typical low shear rates and volume fractions. The focus of this article is a determination of the ranges of anisotropy and dynamic fluctuations in effective properties arising from orientational probability distribution functions generated by steady shear of NPNC monodomains. We combine numerical databases for sheared monodomain distributions[1,2] of thin rod or platelet dispersions together with homogenization theory for low-volume-fraction spheroidal inclusions[3] to calculate effective conductivity tensors of steady and oscillatory sheared mesophases. We then extract maximum scalar conductivity enhancement and anisotropy for each type of sheared monodomain (flow-aligned, tumbling, kayaking, and chaotic). © 2005 WILEY-VCH Verlag GmbH &. Co. KGaA
    • 

    corecore