150 research outputs found

    The southward transport of sub-mesoscale lenses of Bass Strait Water in the centre of anti-cyclonic mesoscale eddies

    Full text link
    Dense shelf water from Bass Strait, southeast Australia, is presently understood to travel northward along the continental shelf, and disperse eastward into the Tasman Sea. Here we report the unexpected discovery by autonomous gliders of lenses of shelf water ∼40 km in diameter and 200-300 m tall at depth in the center of three ∼200 km diameter anti-cyclonic eddies. Reanalysis of 2420 vertical profiles off the continental slope in the western Tasman Sea since 1982 found only 3 distinct patches of Bass Strait Water (BSW), all with positive dynamic height anomalies indicative of anti-cyclones. Through a yet to be understood process, BSW separates from the continental slope and forms a mid-depth lens that aligns vertically with the larger anti-cyclonic mesoscale eddy; and remains at the center of the eddy for 6+ months as it is advected 700 km southward. This pathway subducts shelf water into the ocean interior, and provides a link between mesoscale circulation and shelf water transport. The BSW that is captured in anti-cyclones advects south past the east coast of Tasmania, with some moving into the eastern Indian Ocean. Copyright 2012 by the American Geophysical Union

    Characterising and Predicting Benthic Biodiversity for Conservation Planning in Deepwater Environments

    Get PDF
    Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met

    Variance component estimation uncertainty for unbalanced data: Application to a continent-wide vertical datum

    Get PDF
    Variance component estimation (VCE) is used to update the stochastic model in least-squares adjustments, but the uncertainty associated with the VCE-derived weights is rarely considered. Unbalanced data is where there is an unequal number of observations in each heterogeneous dataset comprising the variance component groups. As a case study using highly unbalanced data, we redefine a continent-wide vertical datum from a combined least-squares adjustment using iterative VCE and its uncertainties to update weights for each data set. These are: (1) a continent-wide levelling network, (2) a model of the ocean’s mean dynamic topography and mean sea level observations, and (3) GPS-derived ellipsoidal heights minus a gravimetric quasigeoid model. VCE uncertainty differs for each observation group in the highly unbalanced data, being dependent on the number of observations in each group. It also changes within each group after each VCE iteration, depending on the magnitude of change for each observation group’s variances. It is recommended that VCE uncertainty is computed for VCE updates to the weight matrix for unbalanced data so that the quality of the updates for each group can be properly assessed. This is particularly important if some groups contain relatively small numbers of observations. VCE uncertainty can also be used as a threshold for ceasing iterations, as it is shown—for this data set at least—that it is not necessary to continue time-consuming iterations to fully converge to unity

    Motor signatures of emotional reactivity in frontotemporal dementia

    Get PDF
    Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases

    Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS). The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients <it>with </it>co-morbid obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD) using voxel-based morphometry (VBM) in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects.</p> <p>Results</p> <p>In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG), but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase.</p> <p>Conclusions</p> <p>From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.</p

    A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.

    Get PDF
    Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often

    The footprint of continental-scale ocean currents on the biogeography of seaweeds

    Get PDF
    Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales.Thomas Wernberg, Mads S. Thomsen, Sean D. Connell, Bayden D. Russell, Jonathan M. Waters, Giuseppe C. Zuccarello, Gerald T. Kraft, Craig Sanderson, John A. West, Carlos F. D. Gurge

    Birth weight, cardiometabolic risk factors and effect modification of physical activity in children and adolescents: pooled data from 12 international studies

    Get PDF
    Abstract: Objectives: Low and high birth weight is associated with higher levels of cardiometabolic risk factors and adiposity in children and adolescents, and increases the risk of cardiovascular diseases, obesity, and early mortality later in life. Moderate-to-vigorous physical activity (MVPA) is associated with lower cardiometabolic risk factors and may mitigate the detrimental consequences of high or low birth weight. Thus, we examined whether MVPA modified the associations between birth weight and cardiometabolic risk factors in children and adolescents. Methods: We used pooled individual data from 12 cohort- or cross-sectional studies including 9,100 children and adolescents. Birth weight was measured at birth or maternally reported retrospectively. Device-measured physical activity (PA) and cardiometabolic risk factors were measured in childhood or adolescence. We tested for associations between birth weight, MVPA, and cardiometabolic risk factors using multilevel linear regression, including study as a random factor. We tested for interaction between birth weight and MVPA by introducing the interaction term in the models (birth weight x MVPA). Results: Most of the associations between birth weight (kg) and cardiometabolic risk factors were not modified by MVPA (min/day), except between birth weight and waist circumference (cm) in children (p = 0.005) and HDL-cholesterol (mmol/l) in adolescents (p = 0.040). Sensitivity analyses suggested that some of the associations were modified by VPA, i.e., the associations between birth weight and diastolic blood pressure (mmHg) in children (p = 0.009) and LDL- cholesterol (mmol/l) (p = 0.009) and triglycerides (mmol/l) in adolescents (p = 0.028). Conclusion: MVPA appears not to consistently modify the associations between low birth weight and cardiometabolic risk. In contrast, MVPA may mitigate the association between higher birth weight and higher waist circumference in children. MVPA is consistently associated with a lower cardiometabolic risk across the birth weight spectrum. Optimal prenatal growth and subsequent PA are both important in relation to cardiometabolic health in children and adolescents
    corecore