5 research outputs found

    Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells.

    Get PDF
    We here provide definitive evidence that ginsenoside-Rg1, the pharmacologically active component of ginseng, is a functional ligand of the glucocorticoid receptor (GR) as determined by fluorescence polarization assay. Rg1 increased the phosphorylation of GR, phosphatidylinositol-3 kinase (PI3K), Akt/PKB and endothelial nitric oxide synthase (eNOS) leading to increase nitric oxide (NO) production in human umbilical vein endothelial cell. Rg1-induced eNOS phosphorylation and NO production were significantly reduced by RU486, LY294,002, or SH-6. Also, knockdown of GR completely eliminated the Rg1-induced NO production. This study revealed that Rg1 can indeed serve as an agonist ligand for GR and the activated GR can induce rapid NO production from eNOS via the non-transcriptional PI3K/Akt pathway

    Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg(1) in vivo and in vitro.

    No full text
    Metadata onlyThe major active constituents of ginseng are ginsenosides, and Rg(1) is a predominant compound of the total extract. Recent studies have demonstrated that Rg(1) can promote angiogenesis in vivo and in vitro. In this study, we used a DNA microarray technology to elucidate the mechanisms of action of Rg(1). We report that Rg(1) induces the proliferation of HUVECs, monitored using [(3)H]-thymidine incorporation and Trypan blue exclusion assays. Furthermore, Rg(1) (150-600 nM) also showed an enhanced tube forming inducing effect on the HUVEC. Rg(1) was also demonstrated to promote angiogenesis in an in vivo Matrigel plug assay, and increase endothelial sprouting in the ex vivo rat aorta ring assay. Differential gene expression profile of HUVEC following treatment with Rg(1) revealed the expression of genes related to cell adhesion, migration and cytoskeleton, including RhoA, RhoB, IQGAP1, CALM2, Vav2 and LAMA4. Our results suggest that Rg(1) can promote angiogenesis in multiple models, and this effect is partly due to the modulation of genes that are involved in the cytoskeletal dynamics, cell-cell adhesion and migration
    corecore