275 research outputs found

    Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones

    Get PDF
    The pharmacology of novel psychoactive substances is mostly unknown. We evaluated the transporter and receptor interaction profiles of a series of para-(4)-substituted amphetamines and pyrovalerone cathinones. We tested the potency of these compounds to inhibit the norepinephrine (NE), dopamine (DA), and serotonin (5-HT) transporters (NET, DAT, and SERT, respectively) using human embryonic kidney 293 cells that express the respective human transporters. We also tested the substance-induced efflux of NE, DA, and 5-HT from monoamine-loaded cells, binding affinities to monoamine receptors, and 5-HT2B receptor activation. Para-(4)-substituted amphetamines, including 4-methylmethcathinone (mephedrone), 4-ethylmethcathinone, 4-fluoroamphetamine, 4-fluoromethamphetamine, 4-fluoromethcatinone (flephedrone), and 4-bromomethcathinone, were relatively more serotonergic (lower DAT:SERT ratio) compared with their analogs amphetamine, methamphetamine, and methcathinone. The 4-methyl, 4-ethyl, and 4-bromo groups resulted in enhanced serotonergic properties compared with the 4-fluoro group. The para-substituted amphetamines released NE and DA. 4-Fluoramphetamine, 4-flouromethamphetamine, 4-methylmethcathinone, and 4-ethylmethcathinone also released 5-HT similarly to 3,4-methylenedioxymethamphetamine. The pyrovalerone cathinones 3,4-methylenedioxypyrovalerone, pyrovalerone, α-pyrrolidinovalerophenone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, and 3,4-methylenedioxy-α-pyrrolidinobutiophenone potently inhibited the NET and DAT but not the SERT. Naphyrone was the only pyrovalerone that also inhibited the SERT. The pyrovalerone cathinones did not release monoamines. Most of the para-substituted amphetamines exhibited affinity for the 5-HT2A receptor but no relevant activation of the 5-HT2B receptor. All the cathinones exhibited reduced trace amine-associated receptor 1 binding compared with the non-β-keto-amphetamines. In conclusion, para-substituted amphetamines exhibited enhanced direct and indirect serotonergic agonist properties and are likely associated with more MDMA-like effects. The pharmacological profile of the pyrovalerone cathinones predicts pronounced stimulant effects and high abuse liability

    Pharmacological profile of novel psychoactive benzofurans

    Get PDF
    Benzofurans are newly used psychoactive substances, but their pharmacology is unknown. The aim of the present study was to pharmacologically characterize benzofurans in vitro.; We assessed the effects of the benzofurans 5-APB, 5-APDB, 6-APB, 6-APDB, 4-APB, 7-APB, 5-EAPB and 5-MAPDB and benzodifuran 2C-B-FLY on the human noradrenaline (NA), dopamine and 5-HT uptake transporters using HEK 293 cells that express the respective transporters. We also investigated the release of NA, dopamine and 5-HT from monoamine-preloaded cells, monoamine receptor-binding affinity and 5-HT2A and 5-HT2B receptor activation.; All of the benzofurans inhibited NA and 5-HT uptake more than dopamine uptake, similar to methylenedioxymethamphetamine (MDMA) and unlike methamphetamine. All of the benzofurans also released monoamines and interacted with trace amine-associated receptor 1 (TA1 receptor), similar to classic amphetamines. Most benzofurans were partial 5-HT2A receptor agonists similar to MDMA, but also 5-HT2B receptor agonists, unlike MDMA and methamphetamine. The benzodifuran 2C-B-FLY very potently interacted with 5-HT2 receptors and also bound to TA1 receptors.; Despite very similar structures, differences were found in the pharmacological profiles of different benzofurans and compared with their amphetamine analogues. Benzofurans acted as indirect monoamine agonists that interact with transporters similarly to MDMA. The benzofurans also interacted with 5-HT receptors. This pharmacological profile probably results in MDMA-like entactogenic psychoactive properties. However, benzofurans induce 5-HT2B receptor activation associated with heart valve fibrosis. The pharmacology of 2C-B-FLY indicates predominant hallucinogenic properties and a risk for vasoconstriction

    Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens

    Get PDF
    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties

    Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives

    Get PDF
    Aminoindanes, piperazines, and pipradrol derivatives are novel psychoactive substances found in "Ecstasy" tablets as replacements for 3,4-methylenedioxymethamphetamine (MDMA) or substances sold as "ivory wave." The pharmacology of these MDMA- and methylphenidate-like substances is poorly known. We characterized the pharmacology of the aminoindanes 5,6-methylenedioxy-2-aminoindane (MDAI), 5-iodoaminoindane (5-IAI), and 2-aminoindane (2-AI), the piperazines meta-chlorophenylpiperazine (m-CPP), trifluoromethylphenylpiperazine (TFMPP), and 1-benzylpiperazine (BZP), and the pipradrol derivatives desoxypipradrol (2-diphenylmethylpiperidine [2-DPMP]), diphenylprolinol (diphenyl-2-pyrrolidinemethanol [D2PM]), and methylphenidate. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine [5-HT]) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporters (NET, DAT, and SERT). We also evaluated the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells and the binding affinity to monoamine transporters and receptors, including trace amine-associated receptor 1 (TAAR1). 5-IAI and MDAI preferentially inhibited the SERT and NET and released 5-HT. 2-AI interacted with the NET. BZP blocked the NET and released DA. m-CPP and TFMPP interacted with the SERT and serotonergic receptors. The pipradrol derivatives were potent and selective catecholamine transporter blockers without substrate releasing properties. BZP, D2PM, and 2-DPMP lacked serotonergic activity and TAAR1 binding, in contrast to the aminoindanes and phenylpiperazines. In summary, all of the substances were monoamine transporter inhibitors, but marked differences were found in their DAT vs. SERT inhibition profiles, release properties, and receptor interactions. The pharmacological profiles of D2PM and 2-DPMP likely predict a high abuse liability

    Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)

    Get PDF
    N-2-methoxybenzyl-phenethylamines (NBOMe drugs) are newly used psychoactive substances with poorly defined pharmacological properties. The aim of the present study was to characterize the receptor binding profiles of a series of NBOMe drugs compared with their 2,5-dimethoxy-phenethylamine analogs (2C drugs) and lysergic acid diethylamide (LSD) in vitro.; We investigated the binding affinities of 2C drugs (2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4, 2C-T-7, and mescaline), their NBOMe analogs, and LSD at monoamine receptors and determined functional 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2B receptor activation. Binding at and the inhibition of monoamine uptake transporters were also determined. Human cells that were transfected with the respective human receptors or transporters were used (with the exception of trace amine-associated receptor-1 [TAAR1], in which rat/mouse receptors were used).; All of the compounds potently interacted with serotonergic 5-HT2A, 5-HT2B, 5-HT2C receptors and rat TAAR1 (most Ki and EC50: <1 μM). The N-2-methoxybenzyl substitution of 2C drugs increased the binding affinity at serotonergic 5-HT2A, 5-HT2C, adrenergic α1, dopaminergic D1-3, and histaminergic H1 receptors and monoamine transporters but reduced binding to 5-HT1A receptors and TAAR1. As a result, NBOMe drugs were very potent 5-HT2A receptor agonists (EC50: 0.04-0.5 μM) with high 5-HT2A/5-HT1A selectivity and affinity for adrenergic α1 receptors (Ki: 0.3-0.9 μM) and TAAR1 (Ki: 0.06-2.2 μM), similar to LSD, but not dopaminergic D1-3 receptors (most Ki:>1 μM), unlike LSD.; The binding profile of NBOMe drugs predicts strong hallucinogenic effects, similar to LSD, but possibly more stimulant properties because of α1 receptor interactions

    How to set up and apply reference levels in fluoroscopy at a national level

    Get PDF
    A nationwide survey was launched to investigate the use of fluoroscopy and establish national reference levels (RL) for dose-intensive procedures. The 2-year investigation covered five radiology and nine cardiology departments in public hospitals and private clinics, and focused on 12 examination types: 6 diagnostic and 6 interventional. A total of 1,000 examinations was registered. Information including the fluoroscopy time (T), the number of frames (N) and the dose-area product (DAP) was provided. The data set was used to establish the distributions of T, N and the DAP and the associated RL values. The examinations were pooled to improve the statistics. A wide variation in dose and image quality in fixed geometry was observed. As an example, the skin dose rate for abdominal examinations varied in the range of 10 to 45mGy/min for comparable image quality. A wide variability was found for several types of examinations, mainly complex ones. DAP RLs of 210, 125, 80, 240, 440 and 110Gy cm2 were established for lower limb and iliac angiography, cerebral angiography, coronary angiography, biliary drainage and stenting, cerebral embolization and PTCA, respectively. The RL values established are compared to the data published in the literatur

    Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Geochemical Cycles 26 (2012): GB2035, doi:10.1029/2011GB004141.The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (δ30Si) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the δ30Si distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical δ30Si gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high δ30Si signature of ≥+1.7‰ into the deep Atlantic, while Antarctic Bottom Water transports Si with a low δ30Si value of around +1.2‰. The deep Atlantic δ30Si distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (δ15N-NO3). We infer that the meridional δ30Si gradient derives from the transport of the high δ30Si signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic δ30Si gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.This work was supported by Swiss National Science Foundation grants 200021-116473 and 200020-130361.2012-12-1

    Post-landslide soil and vegetation recovery in a dry, montane system is slow and patchy

    Get PDF
    Landslides are common disturbances in forests around the world, and a major threat to human life and property. Landslides are likely to become more common in many areas as storms intensify. Forest vegetation can improve hillslope stability via long, deep rooting across and through failure planes. In the U.S. Rocky Mountains, landslides are infrequent but widespread when they do occur. They are also extremely understudied, with little known about the basic vegetation recovery processes and rates of establishment which restabilize hills. This study presents the first evaluation of post-landslide vegetation recovery on forested landslides in the southern Rocky Mountains. Six years after a major landslide event, the surveyed sites have very little regeneration in initiation zones, even when controlling for soil coverage. Soils are shallower and less nitrogen rich in initiation zones as well. Rooting depth was similar between functional groups regardless of position on the slide, but deep-rooting trees are much less common in initiation zones. A lack of post-disturbance tree regeneration in these lower elevation, warm/dry settings, common across a variety of disturbance types, suggests that complete tree restabilization of these hillslopes is likely to be a slow or non-existent, especially as the climate warms. Replacement by grasses would protect against shallow instabilities but not the deeper mass movement events which threaten life and property
    corecore