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Abstract 

Background: N-2-methoxybenzyl-phenethylamines (NBOMe drugs) are newly used 

psychoactive substances with poorly defined pharmacological properties. The aim of 

the present study was to characterize the receptor binding profiles of a series of 

NBOMe drugs compared with their 2,5-dimethoxy-phenethylamine analogs (2C 

drugs) and lysergic acid diethylamide (LSD) in vitro. 

Methods: We investigated the binding affinities of 2C drugs (2C-B, 2C-C, 2C-D, 2C-

E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4, 2C-T-7, and mescaline), their NBOMe 

analogs, and LSD at monoamine receptors and determined functional 5-

hydroxytryptamine-2A (5-HT2A) and 5-HT2B receptor activation. Binding at and the 

inhibition of monoamine uptake transporters were also determined. Human cells that 

were transfected with the respective human receptors or transporters were used 

(with the exception of trace amine-associated receptor-1 [TAAR1], in which rat/mouse 

receptors were used). 

Results: All of the compounds potently interacted with serotonergic 5-HT2A, 5-HT2B, 

5-HT2C receptors and rat TAAR1 (most Ki and EC50: <1μM). The N-2-methoxybenzyl 

substitution of 2C drugs increased the binding affinity at serotonergic 5-HT2A, 5-HT2C, 

adrenergic α1, dopaminergic D1-3, and histaminergic H1 receptors and monoamine 

transporters but reduced binding to 5-HT1A receptors and TAAR1. As a result, 

NBOMe drugs were very potent 5-HT2A receptor agonists (EC50: 0.04-0.5μM) with 

high 5-HT2A/5-HT1A selectivity and affinity for adrenergic α1 receptors (Ki: 0.3-0.9μM) 

and TAAR1 (Ki: 0.06-2.2μM), similar to LSD, but not dopaminergic D1-3 receptors 

(most Ki: >1μM), unlike LSD. 

Conclusion: The binding profile of NBOMe drugs predicts strong hallucinogenic 

effects, similar to LSD, but possibly more stimulant properties because of α1 receptor 

interactions. 
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Abbreviations 

25B-NBOMe, 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] 

ethanamine; 25C-NBOMe, 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-

methoxyphenyl)methyl] ethanamine; 25D-NBOMe, 2-(4-methyl-2,5-

dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 25E-NBOMe, 2-(4-

ethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 25H-NBOMe, 

2-(2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 25I-NBOMe, 2-

(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 25N-

NBOMe, 2-(4-nitro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 

25P-NBOMe, 2-(4-propyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] 

ethanamine; 25T2-NBOMe, 2-(2,5-dimethoxy-4-ethylthiophenyl)-N-[(2-

methoxyphenyl)methyl] ethanamine; 25T4-NBOMe, 2-(2,5-dimethoxy-4-

isopropylthiophenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 25T7-NBOMe, 2-

(2,5-dimethoxy-4-n-propylthiophenyl)-N-[(2-methoxyphenyl)methyl] ethanamine; 2C-

B, 4-bromo-2,5-dimethoxyphenethylamine; 2C-C, 2-(4-chloro-2,5-

dimethoxy)ethanamine; 2C-D, 2-(2,5-dimethoxy-4-methyl)ethanamine; 2C-E, 1-(2,5-

dimethoxy-4-ethylphenyl)-2-aminoethane; 2C-H, 2,5-dimethoxyphenethylamine; 2C-I, 

4-iodo-2,5-dimethoxyphenethylamine; 2C-N, 2-(2,5-dimethoxy-4-nitro)ethanamine; 

2C-P, 2-(2,5-dimethoxy-4-propylphenyl)ethanamine; 25CN-NBOH, 2-([2-(4-cyano-

2,5-dimethoxyphenyl)ethylamino]-methyl)phenol; 2C-T-2, 2-[2,5-dimethoxy-4-

(ethylthio)phenyl]ethanamine; 2C-T-4, 2,5-dimethoxy-4-isopropylthiophenethylamine; 

2C-T-7, 2-[2,5-dimethoxy-4-(propylthio)phenyl]ethanamine; 5-HT, 5-

hydroxytryptamine (serotonin); DA, dopamine; DAT, dopamine transporter; 

mescaline, 2-(3,4,5-trimethoxyphenyl)ethanamine; DOI, 2,5-dimethoxy-4-

iodoamphetamine; NBOMe, N-(2-methoxy)benzyl; NE, norepinephrine; NET, 
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norepinephrine transporter; SERT, serotonin transporter; TAAR, trace amine-

associated receptor; LSD, lysergic acid diethylamide. 

 

Introduction 

 New psychoactive substances are constantly emerging on the illicit drug 

market and typically sold via the Internet. Of particular interest are N-2-

methoxybenzyl-phenethylamines (NBOMe drugs), which are novel and reportedly 

very potent hallucinogens that have been increasingly used recreationally (Forrester, 

2014; Hill et al., 2013; Ninnemann and Stuart, 2013; Rose et al., 2013; Walterscheid 

et al., 2014; Wood et al., 2015; Zuba, 2012), with additional potential use as 

radiotracers (Ettrup et al., 2011; Ettrup et al., 2010). Recreationally used NBOMe 

drugs include 25I-NBOMe, 25C-NBOMe, 25B-NBOMe, and 25D-MBOMe (Armenian 

and Gerona, 2014; Poklis et al., 2014; Rose et al., 2013), which are derivatives of 

2,5-dimethoxy-4-substituted phenethylamines (2C drugs; Dean et al., 2013; Hill and 

Thomas, 2011; Shulgin and Shulgin, 1991). N-2-methoxybenzyl substitution 

enhances the potency of 2C drugs at serotonergic 5-hydroxytryptamine-2A (5-HT2A) 

receptors, resulting in exceptionally potent 5-HT2A receptor agonists (Braden et al., 

2006; Heim, 2004; Nichols et al., 2015) with strong hallucinogenic properties in 

animals and humans (Halberstadt and Geyer, 2014; Srisuma et al., 2015). 

Pharmacological interactions between NBOMe drugs and 5-HT2 receptors have been 

well characterized for some compounds of this novel drug family (Blaazer et al., 

2008; Braden et al., 2006; Ettrup et al., 2011; Ettrup et al., 2010; Hansen et al., 2014; 

Nichols et al., 2008). However, systematic characterizations of the effects of a larger 

series of NBOMe drugs at a wider range of relevant human receptors and 

comparisons with their 2C parent drugs are lacking. Importantly, NBOMe drugs have 

been reported to produce psycho- and cardiovascular stimulant effects, in addition to 

hallucinations. Specifically, sympathomimetic toxicity, including tachycardia, 

hypertension, mydriasis, agitation, and hyperthermia, is commonly reported in cases 
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of acute NBOMe drug intoxication (Hill et al., 2013; Rose et al., 2013; Srisuma et al., 

2015; Stellpflug et al., 2014; Wood et al., 2015). Pharmacologically, compounds of 

the 2C series, including 2C-C, 2C-E, and 2C-I, inhibit the norepinephrine (NE) and 

serotonin transporters (NET and SERT, respectively), similar to amphetamines, 

although with only very low potency (Eshleman et al., 2014; Nagai et al., 2007). 

These findings raise the question of whether NBOMe drugs may have similar but 

more potent stimulant-type pharmacological properties, including inhibition of the 

NET, dopamine (DA) transporter (DAT), and SERT, or interactions with adrenergic α1 

receptors that lead to vasoconstriction. 

We assessed the in vitro pharmacology of a series of NBOMe drugs compared 

with their 2C parent drugs. We characterized the binding affinity profiles at 

monoamine receptors and DAT, NET, and SERT inhibition potencies. We also 

determined the functional 5-HT2A receptor activation potencies because 5-HT2A 

receptors mediate hallucinogenic effects (Nichols, 2004). The prototypical 

serotonergic hallucinogen lysergic acid diethylamide (LSD) was included as a 

comparator drug (Nichols, 2004; Passie et al., 2008). 

 

Methods 

Drugs 

 2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4, 2C-T-7, 

mescaline, 25B-NBOMe, 25C-NBOMe, 25D-NBOMe, 25E-NBOMe, 25H-NBOMe, 

25I-NBOMe, 25N-NBOMe, 25P-NBOMe, 25T2-NBOMe, 25T4-NBOMe, 25T7-

NBOMe, and mescaline-NBOMe were synthesized by Lipomed (Arlesheim, 

Switzerland) for this study at no cost. All of the compounds were used as 

hydrochloride salts. Purity was > 98% for all of the substances. [3H]NE and [3H]DA 

were obtained from Perkin-Elmer (Schwerzenbach, Switzerland), and [3H]5-HT was 

obtained from Anawa (Zürich, Switzerland). 
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Radioligand receptor and transporter binding assays 

 The radioligand binding assays were performed as described previously 

(Hysek et al., 2012; Simmler et al., 2013). Briefly, membrane preparations of human 

embryonic kidney (HEK) 293 cells (Invitrogen, Zug, Switzerland) that overexpress the 

respective transporters (Tatsumi et al., 1997) or receptors (human genes, with the 

exception of rat and mouse genes for trace amine-association receptor 1 [TAAR1]; 

(Revel et al., 2011)) were incubated with the radiolabeled selective ligands at 

concentrations equal to Kd, and ligand displacement by the compounds was 

measured. Specific binding of the radioligand to the target receptor was defined as 

the difference between the total binding and nonspecific binding that was determined 

in the presence of selected competitors in excess. The following radioligands and 

competitors, respectively, were used: N-methyl-[3H]-nisoxetine and indatraline (NET), 

[3H]citalopram and indatraline (SERT), [3H]WIN35,428 and indatraline (DAT), [3H]8-

hydroxy-2-(di-n-propylamine)tetralin and indatraline (5-HT1A receptor), [3H]ketanserin 

and spiperone (5-HT2A receptor), [3H]mesulgerine and mianserin (5-HT2C receptor), 

[3H]prazosin and risperidone (adrenergic α1 receptor), [3H]rauwolscine and 

phentolamine (adrenergic α2 receptor), [3H]SCH 23390 and butaclamol (D1 receptor), 

[3H]spiperone and spiperone (D2 and D3 receptors), [3H]pyrilamine and clozapine, 

(histaminergic H1 receptor), and [3H]RO5166017 and RO5166017 (TAAR1). IC50 

values were determined by calculating non-linear regression curves for a one-site 

model using three to five independent 10-point concentration-response curves for 

each compound. Ki (affinity) values, which correspond to the dissociation constants, 

were determined using the Cheng-Prusoff equation. 

 

Activity at serotonin 5-HT2A receptor 

 Human 5-HT2A receptor-expressing NIH-3T3 cells were incubated in HEPES- 

Hank’s Balanced Salt Solution (HBSS) buffer (70’000 cells/ 100 l) for 1 h at 37ºC in 

96-well poly-D-lysine-coated plates. To each well 100 µl of Dye solution (FLIPR 
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calcium 5 assay kit; Molecular Devices, Sunnyvale, CA, USA) was added and plates 

were incubated for 1 h at 37°C. The plates were then placed in a fluorescence 

imaging plate reader (FLIPR), and 25 µl of the test substances diluted in HEPES-

HBSS buffer containing 250 mM probenicid were added online. The increase in 

fluorescence was then measured. EC50 values were derived from the concentration-

response curves using nonlinear regression. Efficacy (maximal activity) is expressed 

relative to the activity of 5-HT, which was used as a control set to 100%. 

 

Activity at serotonin 5-HT2B receptor 

 Human 5-HT2B receptor-expressing HEK293 cells were incubated in growth 

medium (DMEM high glucose [Invitrogen, Zug, Switzerland], 10 ml/l PenStrep 

[Gibco, Life Technologies, Zug, Switzerland]), 10% FCS non dialysed heat 

inactivated and 250 mg/l geneticin) at a density of 50’000 cells/well at 37ºC in 96-well 

poly-D-lysine-coated plates over-night. On the next day the growth medium was 

removed by snap inversion, and 100 µl of Fluo-4 solution (calcium indicator; 

Molecular Probes, Eugene, OR, USA) was added to each well. The plates were 

incubated for 45 min at 31C. The Fluo-4 solution was removed by snap inversion, 

and 100 µl of Fluo-4 solution was added a second time. The cells were then 

incubated for another 45 min at 31C. Immediately before testing, the cells were 

washed with HBSS (Gibco) and 20 mM HEPES (assay buffer; Gibco) using an 

EMBLA cell washer, and 100 µl assay buffer was added. The plate was placed in a 

fluorescence imaging plate reader (FLIPR), and 25 µl of the test substances diluted 

in assay buffer was added online. The increase in fluorescence was then measured. 

EC50 values were derived from the concentration-response curves using nonlinear 

regression. Efficacy (maximal activity) is expressed relative to the activity of 5-HT, 

which was used as a control set to 100%. 
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Monoamine uptake transporter inhibition 

 Inhibition of the human NET, DAT, and SERT was assessed in HEK 293 cells 

that were stably transfected with transporters as specified previously (Hysek et al., 

2012). Briefly, the cells were suspended in uptake buffer and incubated for 10 min 

with different concentrations of the test substances. The corresponding radiolabeled 

[3H] monoamine (5 nM final concentration) was then added at room temperature. 

After 10 min, uptake was stopped by separating the cells from the buffer using 

centrifugation through silicone oil (Hysek et al., 2012). The centrifugation tubes were 

frozen in liquid nitrogen and cut to separate the cell pellet from the silicone oil and 

assay buffer layers. The cell pellet was then lysed. Scintillation fluid was added, and 

radioactivity was counted on a β-counter. Nonspecific uptake was determined for 

each experiment in the presence of 10 µM fluoxetine for SERT cells, 10 µM 

nisoxetine for NET cells, and 10 µM mazindol for DAT cells and subtracted from the 

total counts to yield specific uptake (100%). The data were fitted by non-linear 

regression to variable slope sigmoidal dose-response curves (bottom = 0%), and IC50 

values were calculated using Prism software (GraphPad, San Diego, CA, USA). 

 

Cytotoxicity 

 To confirm cell integrity during the pharmacological assays, cytotoxicity was 

assessed using the ToxiLight bioassay (Lonza, Basel, Switzerland) according to the 

manufacturer’s instructions. The assay quantitatively measures the release of 

adenylate kinase from damaged cells, providing a highly sensitive method of 

measuring cytolysis (Crouch et al., 1993). Cells that were grown in 96-well plates 

were exposed to the compounds at a high concentration of 100 µM. All of the test 

conditions contained 0.1% (v:v) dimethylsulfoxide, which is non-toxic at this 

concentration and was also used as a negative control. Triton X-100 (0.1%, Sigma-

Aldrich, Buchs, Switzerland) lyses cells and was used as a positive control. After 4 h 

incubation at 37C, 10 µl of the supernatant per well was removed and combined 



 

 9 

with 50 µl of ToxiLight reagent, and luminescence was recorded using a Tecan 

Infinite 200 Pro plate reader (Tecan, Männedorf, Switzerland). 

 

Results 

Interactions with serotonin receptors 

 Table 1 shows binding to serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors, 

activation potency and efficacy at 5-HT2A and 5-HT2B receptors, and 5-HT receptor 

binding ratios. All of the compounds exhibited high binding affinity for 5-HT2A and 5-

HT2C receptors (Ki < 1 µM, with the exception of 2C-H and mescaline). N-2-

methoxybenzyl substitution further increased the average binding affinity for both 5-

HT2A and 5-HT2C receptors 26- and 14-fold (range: 6-100 and 8-32, respectively), 

leading to compounds with up to 8.4-fold higher affinity for these receptors compared 

with LSD. Moderate 5-HT2A over 5-HT2C receptor binding preference was observed, 

with 5-HT2A/5-HT2C receptor binding ratios of 3-16 for the 2C drugs and slightly more 

selective ratios of 5-26 for the NBOMe drugs. All of the compounds also potently 

activated 5-HT2A receptors and typically more potently than LSD (EC50 < 1 µM, with 

the exception of 2C-H, mescaline, and mescaline-NBOMe). However, in contrast to 

the robust effect on binding to 5-HT2A receptors, N-2-methoxybenzyl substitution did 

not consistently change the activation potency at 5-HT2A receptors and even reduced 

the activation efficacy, with the exception of 2C-H. All of the compounds potently 

activated the 5-HT2B receptor (EC50 < 1 µM, with the exception of 2C-H, mescaline, 

mescaline-NBOMe, and LSD). N-2-methoxybenzyl substitution increased 5-HT2B 

receptor activation 5-fold (range: 0.8-18) but reduced activation efficacy. All of the 2C 

drugs potently bound to 5-HT1A receptors (Ki < 0.52 µM, with the exception of 2C-N 

and mescaline), although none exhibited the very high affinity of LSD. N-2-

methoxybenzyl substitution decreased binding to 5-HT1A on average 17-fold (range: 

2-86). The 2C drugs preferentially bound to 5-HT2A over 5-HT1A receptors with 

binding ratios of 14-94, with the exception of 2C-H and mescaline (Table 1). 
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Receptor selectivity was markedly increased for 5-HT2A over 5-HT1A receptors for all 

of the compounds with N-2-methoxybenzyl substitution, with 5-HT2A/5-HT1A ratios > 

100 for 25H-NBOMe and mescaline-NBOMe and > 1000 for all of the other NBOMe 

drugs. 

 

Binding to monoamine receptors and transporters 

 Table 2 shows the binding affinities for monoamine receptors and 

transporters. Compared with the 2C drugs, the NBOMe analogs exhibited higher 

binding affinities for all receptors and transporters, with the exception of TAAR1. 

Specifically, all of the NBOMe drugs and LSD showed high-affinity binding to 

adrenergic α1A receptors (Ki < 1 µM, with the exception of mescaline-NBOMe) and 

19-fold (range: 11-38) higher binding affinity compared with the 2C drugs (not 

including mescaline). Most of the compounds also potently bound to α2A receptors (Ki 

< 1 µM, with the exception of 2C-H, 2C-N, and mescaline). N-2-methoxybenzyl 

substitution did not appreciably alter α2A receptor binding. LSD was the only 

substance that exhibited high-affinity binding to dopamine D1-D3 receptors. Most of 

the 2C and NBOMe drugs showed low-affinity binding to D2 receptors, and NBOMe 

drugs also showed low-affinity binding to D2 and D3 receptors. N-2-methoxybenzyl 

substitution also increased histamine H1 receptor binding 65-fold (range: 2-267) 

compared with the 2C analogs, resulting in high-affinity binding for several NBOMe 

drugs (Table 2). All of the 2C and NBOMe drugs showed high-affinity binding to 

TAAR1rat (Ki < 1 µM, with the exception of mescaline, 25-H-NBOMe, 25-N-NBOMe, 

and mescaline-NBOMe). N-2-methoxybenzyl substitution decreased binding to 

TAAR1rat 4-fold (range: 2-9). Binding affinity to monoamine transporters was low for 

2C drugs (Ki > 10 µM). N-2-methoxybenzyl substitution increased binding to all 

monoamine transporters, resulting in low-affinity interactions for most of the NBOMe 

drugs (Ki < 1-10 µM, with the exception of mescaline-NBOMe). LSD did not interact 

with any of the monoamine transporters. 
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Monoamine uptake transporter inhibition 

 IC50 values for monoamine uptake inhibition are listed in Table 3. The 2C 

drugs did not inhibit or only very weakly inhibited (IC50 > 10 µM) monoamine uptake. 

N-2-methoxybenzyl substitution consistently enhanced monoamine uptake inhibition 

potency approximately two- to 15-fold for the NET, two- to five-fold for the DAT, and 

two- to 26-fold for the SERT. As a result, 25B-NBOMe, 25C-NBOMe, 25D-NBOMe, 

25E-NBOMe, 25H-NBOMe, and 25I-NBOMe blocked the NET and/or SERT at 5-10 

µM concentrations. LSD did not inhibit any of the monoamine transporters. 

 

Cytotoxicity 

 None of the compounds produced cytotoxicity after 4 h incubation at 37C, 

with the exception of 25T7-NBOMe. 25T7-NBOMe became toxic after 4 h incubation 

at 100 µM (but not 10 µM). Because the assays lasted less than 4 h, this toxicity did 

not affect the data. 

 

Discussion 

 We pharmacologically characterized the in vitro receptor interaction profiles of 

novel recreationally abused hallucinogenic N-2-methoxybenzyl-substituted 

phenethylamines compared with their 2C phenethylamine analogs. Both the NBOMe 

and 2C drugs potently interacted with serotonin 5-HT2A, 5-HT2B, 5-HT2C receptors and 

TAAR1rat. We also found several consistent and potentially important structure-affinity 

relationships for the NBOMe drugs, their 2C analogs, and several targets. 

Specifically, N-2-methoxybenzyl substitution increased the binding affinity for and/or 

activation potency at serotonergic 5-HT2A, 5-HT2B, 5-HT2C receptors, adrenergic α1 

receptors, dopaminergic D1-3 receptors, histaminergic H1 receptors, and monoamine 

transporters but reduced binding to 5-HT1A receptors and TAAR1. 
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The 5-HT2A receptor mediates hallucinogenic drug properties (Halberstadt and 

Geyer, 2011; Nelson et al., 1999; Nichols, 2004; Vollenweider et al., 1998) and is 

therefore considered the key target of hallucinogenic phenethylamines, including 2C 

and NBOMe drugs (Braden et al., 2006; Halberstadt, 2015; Halberstadt and Geyer, 

2014). N-2-methoxybenzyl substitution consistently increased the already high in 

vitro affinity of 2C drugs for 5-HT2A receptors, in agreement with data on 25H-

NBOMe and 25I-NBOMe vs. 2C-H and 2C-I, respectively (Braden et al., 2006; Heim, 

2004). All of the NBOMe drugs exhibited low nanomolar or even subnanomolar 

affinity for 5-HT2A receptors, confirming studies on 25B-NBOMe, 25C-NBOMe, 25H-

NBOMe, 25I-NBOMe, and 25B-NBOMe that used rat receptors (Braden et al., 2006; 

Ettrup et al., 2011; Ettrup et al., 2010; Nichols et al., 2015) or human receptors 

(Braden et al., 2006; Hansen et al., 2014; Nichols et al., 2015). Generally, 5-HT2A 

receptor affinity correlates with hallucinogenic drug potency in humans (Halberstadt, 

2015; Titeler et al., 1988), and NBOMe drugs can be expected to be extremely 

potent hallucinogens in vivo. Indeed, higher incidences of hallucinations and 

delusions have been reported in patients with NBOMe compared with 2C drug 

intoxication (Forrester, 2013, 2014; Srisuma et al., 2015). 

Surprisingly, the consistent six- to 100-fold increase in 5-HT2A receptor affinity 

that was produced by N-2-methoxybenzyl substitution did not translate into a similar 

increase in 5-HT2A receptor activation potency, and the activation efficacy was even 

reduced compared with the 2C drugs in our functional assay. In contrast, others 

found that N-2-methoxybenzyl substitution in 2C-H or 2C-I increased the potency for 

rat or human 5-HT2A receptor activation in the inositol phosphate hydrolysis assay in 

vitro (Braden et al., 2006). However, high-affinity agonist binding does not correlate 

well with inositol phosphate turnover (Acuna-Castillo et al., 2002; Roth et al., 1997), 

suggesting that additional ligand-receptor interactions contribute to receptor 

activation (Halberstadt, 2015; Nichols, 2004). Additionally, marked discrepancies 

between inositol phosphate hydrolysis activation and other in vitro assays and the in 
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vivo effects of hallucinogens in laboratory animals or humans are well recognized 

(Nichols, 2004; Saez et al., 1994; Villalobos et al., 2004). Thus, although most of the 

effects of hallucinogens are clearly mediated by 5-HT2A receptor activation 

(Halberstadt, 2015; Nichols, 2004), the signaling pathways that mediate these effects 

have not yet been conclusively identified (Halberstadt, 2015). 

Currently unknown pharmacokinetic characteristics of NBOMe drugs may also 

influence drug potency in vivo. For example, differences in the in vivo brain binding 

properties of N-2-methoxybenzyl-substituted positron emission tomography tracers 

were reported for substances with similar in vitro 5-HT2A receptor binding properties 

(Ettrup et al., 2011). Most importantly, NBOMe drugs are used recreationally at 

higher doses than LSD (Bersani et al., 2014; Halberstadt and Geyer, 2014), despite 

their higher 5-HT2A receptor binding affinities. The lower in vivo potency of orally 

administered NBOMe drugs could be explained by their lower hepatic stability that 

reduced oral bioavailability compared with 2C drugs (Leth-Petersen et al., 2014). 

Thus, high 5-HT2A receptor binding or activation in vitro is only one factor that 

potentially predicts hallucinogen potency in vivo. In the first in vivo studies that 

evaluated NBOMe drugs in mice, 25I-NBOMe was 14-times more potent than its 

analog 2C-I in inducing 5-HT2A receptor-mediated head-twitch responses 

(Halberstadt and Geyer, 2014), consistent with the higher 5-HT2A receptor binding in 

the present study. In contrast, 25I-NBOMe was slightly less potent in inducing head 

twitches than expected, based on its high 5-HT2 binding potency (Nichols et al., 

2015) and compared with LSD (Halberstadt and Geyer, 2013, 2014), consistent with 

the similar 5-HT2A receptor activation potency of the two compounds in the present 

study but not reflecting the higher receptor binding potency of 25I-NBOMe compared 

with LSD. Additionally, 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]-

methyl)phenol (25CN-NBOH), which is structurally similar to the NBOMe drugs that 

were tested in the present study, was a more potent 5-HT2A receptor agonist than 

2,5-dimethoxy-4-iodoamphetamine (DOI) in vitro (Hansen et al., 2014) but less 
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effective in inducing head-twitch responses in mice (Fantegrossi et al., 2015). Thus, 

more in vivo studies are needed to determine the in vivo potency of novel NBOMe 

drugs. 

Within the 2C or NBOMe drug series, para-phenyl substitutions compared with 

2C-H or 25H-NBOMe, respectively, enhanced 5-HT2 receptor binding and activation 

potency, which was expected based on previous studies (Blaazer et al., 2008; 

Eshleman et al., 2014; Hansen et al., 2014; Shulgin and Shulgin, 1991). Interestingly, 

5-HT2A receptor activation potency increased with the size of the 4-substituent (2C-D 

< 2C-E < 2C-P) within the 2C series (Blaazer et al., 2008; Eshleman et al., 2014), 

whereas it decreased within the NBOMe series (25D-NBOMe > 25-E-NBOMe > 25P-

NBOMe). Similarly, activation potency increased with halogen size for the 4-halogen-

substituted 2C drugs (2C-C < 2C-B < 2C-I) but not consistently for the NBOMe 

analogs. Thus, N-2-methoxybenzyl substitution interacted with 4-phenyl substitution 

to affect 5-HT2A receptor activation potency. 

In the present study, all of the compounds were partial agonists at 5-HT2A 

receptors, but receptor activation efficacy was consistently decreased for the N-2-

methoxybenzyl-substituted compounds in the assay used in the present study. The 

high 5-HT2A receptor affinity and reduction of partial activation efficacy of the NBOMe 

drugs suggest 5-HT2A antagonistic properties of these compounds, as similarly 

described for LSD (Nichols, 2004). In fact, 2C drugs have been shown to act as 5-

HT2A receptor antagonists that inhibit 5-HT-induced currents in Xenopus laevis 

oocytes (Villalobos et al., 2004). Therefore, 5-HT2A receptor antagonism has been 

suggested to also play a role in the mechanism of action of hallucinogens (Villalobos 

et al., 2004). Alternatively, other receptors, such as 5-HT2C and 5-HT1 receptors, may 

contribute to the mechanism of action of hallucinogens, or signaling pathways other 

than inositol phosphate hydrolysis may be involved (Nichols, 2004). Consistently, N-

2-methoxybenzyl substitution increased binding affinity for 5-HT2C receptors. All of 

the NBOMe drugs very potently bound to 5-HT2C receptors, with only low (five- to 26-
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fold) selectivity for 5-HT2A receptors over 5-HT2C receptors in the binding assay, as 

previously shown for some NBOMe drugs (Ettrup et al., 2010; Hansen et al., 2014) 

and generally observed with hallucinogenic phenethylamines (Eshleman et al., 2014; 

Glennon et al., 1992). N-2-methoxybenzyl substitution only slightly increased 5-HT2A 

over 5-HT2C receptor binding selectivity. In contrast, N-2-methoxybenzyl substitution 

consistently decreased 5-HT1A receptor binding, thus markedly altering 5-HT1A over 

5-HT2A receptor binding ratios for the NBOMe drugs compared with the 2C drugs. 

Thus, NBOMe drugs are unlike LSD, which is a potent 5-HT1A receptor ligand and full 

agonist at 5-HT1A receptors (Nichols, 2004). Importantly, 5-HT1A receptors have been 

shown to contribute to the discriminative stimulus effects of some hallucinogens 

(Halberstadt, 2015; Nichols, 2004). Additionally, 5-HT1A antagonism markedly 

enhanced the hallucinogenic effects of DMT in humans (Strassman, 1996). 

Accordingly, 5-HT1A receptor stimulation has been hypothesized to counteract 

hallucinogenic activity (Halberstadt and Geyer, 2011; Nichols, 2004), and lower 5-

HT1A receptor stimulation for the NBOMe drugs may further enhance their 

hallucinogenic drug properties. N-2-methoxybenzyl substitution increased 5-HT2B 

activation, but this is likely not relevant for the psychotropic properties of the NBOMe 

drugs (Blaazer et al., 2008). However, 5-HT2B receptors have been implicated in 

substance-induced heart valve fibrosis (Bhattacharyya et al., 2009; Setola et al., 

2003), and the 2C and NBOMe drugs may therefore have cardiac toxicity if used 

chronically. 

Because NBOMe drugs produce marked sympathomimetic cardiovascular 

effects in humans (Wood et al., 2015), we tested whether these drugs interact with 

monoamine transporters similarly to cocaine or amphetamines (Simmler et al., 2013; 

Simmler et al., 2014a) and other novel psychoactive substances (Rickli et al., 2015a; 

Rickli et al., 2015b; Simmler et al., 2014a; Simmler et al., 2014b). N-2-methoxybenzyl 

substitution enhanced monoamine transporter inhibition compared with the 2C drugs. 

However, the potency of even the most potent NBOMe drugs at the NET and SERT 
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was low and only in the 5-10 μM range, indicating that amphetamine-type 

monoamine transporter interactions contribute only little to the cardiostimulant effects 

of NBOMe drugs.  

In addition to their very high 5-HT2A binding affinity, we found that the NBOMe 

drugs and LSD had high binding affinity for adrenergic α1A receptors. 2C drugs have 

been shown to contract blood vessels (Saez et al., 1994) through direct interactions 

with serotonergic 5-HT2 and adrenergic α1 receptors (Lobos et al., 1992). The 

vasoconstrictive potency of 2C drugs does not appear to correlate well with 

hallucinogenic potency in humans (Saez et al., 1994) or 5-HT2A receptor activation. 

For example, 2C-D had higher affinity for 5-HT2A receptors compared with 2C-H in 

the present study but lower potency in contracting the rat aorta (Saez et al., 1994). 

Additionally, 2C-N, which exhibited high affinity for 5-HT2A receptors but not α1 

receptors in the present study, did not present vasoconstrictive activity (Saez et al., 

1994). These findings and the relatively high affinity of the NBOMe drugs for 

adrenergic α1 receptors indicate that these receptors might contribute to the 

stimulant-type cardiovascular effects that are typically seen in cases of NBOMe drug 

intoxication (Srisuma et al., 2015; Wood et al., 2015). Additionally, the behavioral 

effects of 25I-NBOMe in mice showed a rapid peak (within minutes), whereas the 

response to 2C-I was relatively flat (Halberstadt and Geyer, 2014). Thus, such 

substance characteristics as the higher lipophilicity of NBOMe drugs may further 

accentuate the clinical drug response. As a result, there is likely a high risk of 

overdose with NBOMe drugs, and several fatalities have been reported (Hill et al., 

2013; Srisuma et al., 2015; Walterscheid et al., 2014; Wood et al., 2015). 

Both the 2C and NBOMe drugs bound to TAAR1, with few exceptions. N-2-

methoxybenzyl substitution slightly decreased TAAR1 binding affinity as previously 

shown for other N-substitutions in phenethylamines (Lewin et al., 2008). TAAR1 

modulates psychotropic drug actions. Importantly, methylenedioxymethamphetamine 

inhibits its own stimulant effects via TAAR1 activation (Di Cara et al., 2011). Whether 
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similar TAAR1-mediated “auto-inhibition” exists for hallucinogens remains to be 

determined. One hypothesis is that the lower TAAR1 activity that is associated with 

N-2-methoxybenzyl substitution may also enhance psychostimulant drug properties 

in vivo. 

LSD exhibited high affinity for D1, D2 and D3 receptors, as previously shown 

(Watts et al., 1995) and in contrast to phenethylamines. D2 receptors have been 

shown to contribute to the interoceptive effects of LSD in rats (Halberstadt and 

Geyer, 2013, 2014). Although N-2-methoxybenzyl substitution increased D1-3 

receptor binding affinity compared with 2C drugs, NBOMe drugs were less potent at 

D1-3 receptors compared with LSD, indicating that LSD has a unique mixed 

dopaminergic-serotonergic binding profile. 

In summary, NBOMe drugs are highly potent 5-HT2A receptor ligands and 

partial 5-HT2A receptor agonists, similar to the classic hallucinogen LSD, but with 5-

HT2 over 5-HT1 receptor selectivity, unlike LSD. NBOMe drugs bind to adrenergic α1 

receptors and TAAR1, similar to LSD, but do not bind to dopaminergic D1-3 receptors, 

unlike LSD. The in vitro binding profiles of NBOMe drugs suggest that they have 

higher hallucinogenic effects and potency compared with their parent 2C drugs and 

are similar to the very potent hallucinogen LSD because of their similar or even 

higher potency at 5-HT2A receptors. At higher doses, NBOMe drugs may also exhibit 

additional stimulant properties through α1 receptor interactions. 
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Figure Legend 

 

Figure 1. Chemical structures of 2,5-dimethoxyphenethylamines (2C drugs) and their 

N-2-methoxybenzyl-substituted analogs (NBOMe drugs). 
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Table 1. Serotonin receptor interactions

5-HT1A 5-HT2C

receptor binding 

Ki ± SD [µM]

receptor binding Ki 

± SD [µM]

activation potency 

EC50 ± SD [µM]

activation efficacy 

% maximum ± SD

activation potency 

EC50 ± SD [µM]

activation efficacy 

% maximum ± SD

receptor binding 

Ki ± SD [µM]
5-HT2A/5-HT1A 5-HT2A/5-HT2C

2Cs 

2C-B 0.24 ± 0.04 0.0086 ± 0.003 0.08 ± 0.02 45 ± 7 0.13 ± 0.06 89 ± 13 0.047 ± 0.009 28 4.7

2C-C 0.19 ± 0.01 0.0130 ± 0.005 0.20 ± 0.06 49 ± 10 0.28 ± 0.11 81 ± 14 0.090 ± 0.026 15 6.9

2C-D 0.44 ± 0.01 0.0324 ± 0.005 0.35 ± 0.18 41 ± 3 0.23 ± 0.07 77 ± 17 0.15 ± 0.03 14 4.6

2C-E 0.36 ± 0.04 0.0105 ± 0.001 0.11 ± 0.03 40 ± 2 0.19 ± 0.04 66 ± 7 0.10 ± 0.02 34 10

2C-H 0.07 ± 0.02 1.6 ± 0.3 9.4 ± 0.5 28 ± 5 6.2 ± 2.8 46 ± 18 4.1 ± 0.9 0.04 2.6

2C-I 0.18 ± 0.01 0.0035 ± 0.001 0.06 ± 0.03 45 ± 8 0.15 ± 0.10 70 ± 18 0.040 ± 0.009 51 11

2C-N 2.2 ± 0.1 0.0235 ± 0.011 0.17 ± 0.04 48 ± 10 0.73 ± 0.09 74 ± 20 0.37 ± 0.02 94 16

2C-P 0.11 ± 0.04 0.0081 ± 0.001 0.09 ± 0.06 63 ± 5 0.13 ± 0.01 72 ± 18 0.040 ± 0.005 14 4.9

2C-T-2 0.37 ± 0.04 0.0090 ± 0.002 0.08 ± 0.03 67 ± 16 0.13 ± 0.09 75 ± 14 0.069 ±  0.018 41 7.7

2C-T-4 0.47 ± 0.13 0.0279 ± 0.012 0.22 ± 0.13 87 ± 7 0.16 ± 0.06 68 ± 10 0.18 ±  0.07 17 6.5

2C-T-7 0.52 ± 0.05 0.0065 ± 0.002 0.13 ± 0.05 76 ± 10 0.35 ± 0.25 45 ± 10 0.039 ±  0.013 80 6.0

Mescaline 4.6 ± 0.4 6.3 ± 1.8 10 ± 1.8 56 ± 15 > 20 NA 17 ± 2.0 0.73 2.7

N-benzylphenylethylamines (NBOMes)

25B-NBOMe 3.6 ± 0.3 0.0005 ± 0.0000 0.04 ± 0.01 28 ± 7 0.01 ± 0.01 19 ± 5 0.0062 ± 0.0022 7200 12

25C-NBOMe 5.0 ± 0.1 0.0007 ± 0.0002 0.15 ± 0.06 32 ± 2 0.10 ± 0.13 16 ± 5 0.0052 ± 0.0026 7143 7.4

25D-NBOMe 7.1 ± 0.5 0.0010 ± 0.0004 0.09 ± 0.03 27 ± 7 0.10 ± 0.07 22 ± 6 0.013  ± 0.004 7100 13

25E-NBOMe 3.5 ± 0.2 0.0006 ± 0.0001 0.16 ± 0.11 28 ± 15 0.06 ± 0.03 26 ± 10 0.0072 ± 0.0029 5833 12

25H-NBOMe 6.0 ± 0.7 0.0164 ± 0.0014 0.49 ± 0.07 38 ± 10 0.34 ± 0.14 11 ± 5 0.13 ± 0.02 366 7.9

25I-NBOMe 1.8 ± 0.3 0.0006 ± 0.0002 0.24 ± 0.12 27 ± 7 0.13 ± 0.08 32 ± 12 0.0046 ±  0.0020 3000 7.7

25N-NBOMe 4.2 ± 0.6 0.0008  ± 0.0002 0.07 ± 0.03 34 ± 3 0.07 ± 0.03 26 ± 14 0.021  ± 0.003 5250 26

25P-NBOMe 1.8 ± 0.1 0.0011 ±  0.0002 0.22 ± 0.11 42 ± 7 0.17 ± 0.13 23 ± 8 0.0060 ±  0.0015 1636 5.5

25T2-NBOMe 2.2 ± 0.2 0.0006 ± 0.0002 0.10 ± 0.03 38 ± 6 0.04 ± 0.04 31 ± 12 0.0065  ± 0.0006 3667 11

25T4-NBOMe 2.5 ± 0.3 0.0016 ± 0.0004 0.13 ± 0.05 46 ± 8 0.20 ± 0.10 27 ± 11 0.016 ± 0.005 1563 10

25T7-NBOMe 1.8 ± 0.2 0.0011 ± 0.0002 0.26 ± 0.16 41 ± 6 0.31 ± 0.23 14 ± 5 0.0064 ± 0.0013 1636 5.8

Mescaline-NBOMe 21 ± 5.7 0.14 ± 0.03 3.0 ± 0.6 33 ± 11 > 20 NA 0.64 ± 0.04 147 4.5

LSD 0.0030 ± 0.0005 0.0042 ± 0.0013 0.26 ± 0.15 28 ± 10 12 ± 0.35 71 ± 31 0.015 ± 0.003 0.71 3.6

 Values are Ki given as µM (mean ± SD); NA, not assessed

5-HT2A 5-HT2B Selectivity (binding ratios) 
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Table 2. Monoamine transporter and receptor-binding affinities 

a1A a2A D1 D2 D3 H1 TAAR1rat TAAR1mouse
NET

a
DAT

b
SERT

c

2C-series

2C-B 8.2 ± 2.2 0.32 ± 0.01 12 ± 1.2 2.2 ± 0.3 10 ± 2.0 14 ± 0.5 0.09 ± 0.01 3.0 ± 0.3 31 ±  6.6 > 30 9.7 ± 0.3

2C-C 13 ± 1.9 0.53 ± 0.06 13 ± 1.0 2.1 ± 0.4 17 ± 0.3 24 ± 0.9 0.11 ± 0.02 4.1 ± 0.3 > 30 > 30 24 ± 4.1

2C-D 12 ± 3.2 0.29 ± 0.03 24 ± 5.2 7.1 ± 1.7  > 17 > 25 0.15 ± 0.03 3.5 ± 0.1 > 30 > 30 31 ± 2.2

2C-E 7.4 ± 2.8 0.10 ± 0.02 15 ± 0.6 3.2 ± 1.0 19 ± 4.4 > 25 0.07 ± 0.01 1.2 ± 0.1 33 ± 2.7 > 30 29 ± 4.4

2C-H 7.9 ± 1.8 1.0 ± 0.05 > 14 9.0 ± 1.5  > 17 > 25 0.90 ± 0.16 11 ± 2.2 > 30 > 30 > 30

2C-I 5.1 ± 1.1 0.07 ± 0.01 13 ± 4.1 2.7 ± 0.58 5.0 ± 0.1 6.1 ± 0.5 0.12 ± 0.02 3.3 ± 0.1 15 ± 3.5 > 30 4.9  ± 0.3

2C-N > 15 1.3 ± 0.2 19 ± 5.2 6.1 ± 2.7 20 ± 3.1 > 25 0.34 ± 0.02 > 20 > 30 > 30 32 ± 3.1

2C-P 3.5 ± 0.5 0.09 ± 0.01 8.4 ± 0.9 2.3 ± 0.7 5.2 ± 0.5 21 ± 3.2 0.02 ± 0.01 0.28 ± 0.03 18 ± 2.4 40 ± 4.0 19 ± 0.2

2C-T-2 17 ± 6.4 0.23 ± 0.01 15 ± 1.7 5.1 ± 1.0 11 ± 0.6 > 25 0.04 ± 0.01 2.2 ± 0.6 > 30 > 30 13 ± 0.6

2C-T-4 11 ± 4.4 0.13 ± 0.04 20 ± 6.3 16 ± 2.1 19 ± 1.4 > 25 0.05 ± 0.01 4.5 ± 0.9 17 ± 1.1 > 30 > 30

2C-T-7 13 ± 5.0 0.18 ± 0.001 15 ± 3.1 5.0 ± 0.8 7.5 ± 0.3 >  25 0.03 ±  0.01 0.56 ± 0.1 2 27 ± 9.8 34 ± 6.2 12 ± 0.7

Mescaline > 15 1.4 ± 0.2 > 14 > 10  > 17 > 25 3.3 ± 0.5 11 ± 3.6 > 30 > 30 > 30

N-benzylphenylethylamines (NBOMes)

25B-NBOMe 0.43 ± 0.10  0.43 ± 0.03 9.3 ± 2.0 0.84 ± 0.27  2.7 ± 0.3 0.08 ± 0.02 0.28 ± 0.002 4.5 ± 1.7 1.1 ± 0.3 7.2 ± 0.5 0.84  ± 0.06

25C-NBOMe 0.81 ± 0.26 0.56 ± 0.08 12 ± 1.6 1.6 ± 0.4 3.5 ± 0.3 0.09 ± 0.01 0.52 ± 0.10 15 ± 1.9 1.6 ± 0.6 14 ± 3 1.5 ± 0.1

25D-NBOMe 0.70 ± 0.26 0.37 ± 0.05 8.7 ± 1.4 2.6 ± 0.4 6.4 ± 0.9 0.63 ± 0.06 0.81 ± 0.10 13 ± 4.4 2.2 ± 0.3 14 ± 2.4 1.4 ± 0.2

25E-NBOMe 0.53 ± 0.20 0.26 ± 0.07 4.9 ± 0.9 1.5 ± 0.2 3.2 ± 0.2 1.4 ± 0.2 0.26 ± 0.03 1.1 ± 0.3 3.0 ± 0.2 8.1 ± 0.6 1.7 ± 0.1

25H-NBOMe 0.55 ± 0.05 0.53 ± 0.04 14 ± 2.4 7.7 ± 1.7 20 ± 4.5 4.1 ± 0.4 1.4 ± 0.2 > 20 5.5 ± 0.9 35 ± 1.7 2.3 ± 0.1

25I-NBOMe 0.37 ± 0.02 0.32 ± 0.01 6.7 ± 1.1 0.90 ± 0.13 2.1 ± 0.2 0.09 ± 0.01 0.44 ± 0.07 4.0 ± 0.8 1.3 ± 0.5 5.4 ± 0.5 1.0 ± 0.2

25N-NBOMe 0.85 ± 0.11 0.59 ± 0.07 18 ± 6.7 2.4 ± 0.1 4.5 ± 0.8 0.21 ± 0.04 2.2 ± 0.1 > 20 7.2 ± 0.5 13 ± 1.2 5.1 ± 0.3

25P-NBOMe 0.31 ± 0.08 0.41 ± 0.07 3.1 ± 0.1 0.87 ± 0.08 2.3 ± 0.3 1.7 ± 0.2 0.06 ± 0.01 0.24 ± 0.03 2.8 ± 0.3 4.7 ± 0.4 5.2 ± 0.4

25T2-NBOMe 0.55 ± 0.17 0.45 ± 0.04 7.7 ± 0.4 1.6 ± 0.3 3.0 ± 0.4 0.49 ± 0.04 0.35 ± 0.02 4.2 ± 0.6 5.9 ± 0.4 8.6 ± 1.8 5.0 ± 0.2

25T4-NBOMe 0.58 ± 0.25 0.26 ± 0.03 4.9 ± 0.5 1.7 ± 0.5 1.9 ± 0.3 5.4 ± 0.3 0.12 ± 0.02 1.6 ± 0.4 4.3 ± 0.8 6.2 ± 1.5 8.1 ± 0.3

25T7-NBOMe 0.34 ± 0.06 0.36 ± 0.02 4.1 ± 0.2 1.0 ± 0.2 1.4 ± 0.2 1.2 ± 0.1 0.09 ± 0.03 1.0 ± 0.2 3.7 ± 1.1 4.8 ± 1.4 3.2 ± 0.2

Mescaline-NBOMe 3.0  ± 1.2 0.81 ± 0.05 > 14 9.6 ± 2.6  > 17 14 ± 1.2 13 ± 5.6 > 20 46 ± 7.5 > 30 24 ± 1.3

LSD 0.67 ± 0.18 0.012 ± 0.002 0.31 ± 0.1 0.025 ± 0.0004 0.096 ± 0.005 1.1 ± 0.2 0.45 ± 0.05 10 ± 2.9 > 30 > 30 > 30

Values are Ki  given as µM (mean ± SD). Comparative Ki values for known monoamine transporter inhibitors were: 0.015 ± 0.01 µM for reboxetine at the NET
a
, 0.06 ± 0.01 µM for methylphenidate at the DAT

b
, and 0.005 ± 0.001 µM for citalopram at 

the SERT
c
.
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Table 3. Monoamine transporter inhibition

NET DAT SERT

IC50 [µM] (95% CI) IC50 [µM] (95% CI) IC50 [µM] (95% CI)

2C-series

2C-B 44 (33-58) 231 (196-271) 18 (12-27)

2C-C 93 (64-137) 305 (243-383) 74 (58-95)

2C-D 45 (28-72) 626 (536-730) 77 (60-98)

2C-E 26 (18-37) 275 (221-343) 62 (52-74)

2C-H 125 (97-161) 857 (752-976) 311 (238-408)

2C-I 22 (16-31) 126 (103-155) 13 (10-16)

2C-N 287 (223-369) >900 154 (112-213)

2C-P 94 (73-120) 198 (136-287) 30 (22-41)

2C-T-2 153 (152-154) 332 (332-332) 62 (62-62)

2C-T-4 134 (92-195) 294 (242-357) 113 (92-138)

2C-T-7 135 (115-163) 261 (210-324) 44 (36-52)

Mescaline >900 841 (590-1200) 367 (291-462)

N-benzylphenylethylamines (NBOMes)

25B-NBOMe 6.7 (5.6-8.1) 117 (89-154) 7.1 (5.7-8.8)

25C-NBOMe 5.9 (4.4-7.8) 70 (56-87) 7.3 (5.6-9.6)

25D-NBOMe 4.0 (3.0-5.3) 106 (81-140) 3.9 (2.6-5.7)

25E-NBOMe 11 (8.3-14) 100 (88-112) 8.3 (6.2-11)

25H-NBOMe 10 (7.8-13) 120 (101-144) 12 (9.7-14)

25I-NBOMe 10 (7.4-14) 65 (46-89) 6.8 (4.8-9.5)

25N-NBOMe 33 (25-44) 245 (194-310) 20 (15-26)

25P-NBOMe 14 (11-16) 82 (61-110) 12 (9.3-16)

25T2-NBOMe 25 (15-42) 67 (54-84) 20 (14-29)

25T4-NBOMe 28 (22-35) 58 (43-80) 14 (11-18)

25T7-NBOMe 34 (29-40) 55 (45-68) 17 (13-23)

Mescaline-NBOMe 89 (61-130) 449 (303-665) 85 (63-116)

LSD >900 >900 >900

Monoamine transporter inhibitors 

Reboxetine 0.036 (0.030-0.044) ns ns

Methylphenidate ns 0.12 (0.09-0.16) ns

Citalopram ns ns 0.045 (0.037-0.057)

Values are means of three to four independent experiments and 95% confidence intervals (CI). ns, not 

shown. 

 


