22,247 research outputs found

    Density-functional investigation of rhombohedral stacks of graphene: topological surface states, nonlinear dielectric response, and bulk limit

    Full text link
    A DFT-based investigation of rhombohedral (ABC)-type graphene stacks in finite static electric fields is presented. Electronic band structures and field-induced charge densities are compared with related literature data as well as with own results on (AB) stacks. It is found, that the undoped AB-bilayer has a tiny Fermi line consisting of one electron pocket around the K-point and one hole pocket on the line K-Γ\Gamma. In contrast to (AB) stacks, the breaking of translational symmetry by the surface of finite (ABC) stacks produces a gap in the bulk-like states for slabs up to a yet unknown critical thickness Nsemimet≫10N^{\rm semimet} \gg 10, while ideal (ABC) bulk (β\beta-graphite) is a semi-metal. Unlike in (AB) stacks, the ground state of (ABC) stacks is shown to be topologically non-trivial in the absence of external electric field. Consequently, surface states crossing the Fermi level must unavoidably exist in the case of (ABC)-type stacking, which is not the case in (AB)-type stacks. These surface states in conjunction with the mentioned gap in the bulk-like states have two major implications. First, electronic transport parallel to the slab is confined to a surface region up to the critical layer number NsemimetN^{\rm semimet}. Related implications are expected for stacking domain walls and grain boundaries. Second, the electronic properties of (ABC) stacks are highly tunable by an external electric field. In particular, the dielectric response is found to be strongly nonlinear and can e.g. be used to discriminate slabs with different layer numbers. Thus, (ABC) stacks rather than (AB) stacks with more than two layers should be of potential interest for applications relying on the tunability by an electric field.Comment: 36 pages, 17 figure

    Word contexts enhance the neural representation of individual letters in early visual cortex

    No full text
    Visual context facilitates perception, but how this is neurally implemented remains unclear. One example of contextual facilitation is found in reading, where letters are more easily identified when embedded in a word. Bottom-up models explain this word advantage as a post-perceptual decision bias, while top-down models propose that word contexts enhance perception itself. Here, we arbitrate between these accounts by presenting words and nonwords and probing the representational fidelity of individual letters using functional magnetic resonance imaging. In line with top-down models, we find that word contexts enhance letter representations in early visual cortex. Moreover, we observe increased coupling between letter information in visual cortex and brain activity in key areas of the reading network, suggesting these areas may be the source of the enhancement. Our results provide evidence for top-down representational enhancement in word recognition, demonstrating that word contexts can modulate perceptual processing already at the earliest visual regions

    Next Generation Higgs Bosons: Theory, Constraints and Discovery Prospects at the Large Hadron Collider

    Get PDF
    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons are allowed to Standard Model fermions. We detail the resulting general Higgs potential and mass spectroscopy in both a Standard Model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced b→sγb\to s\gamma decays and LEP2 direct production limits. We investigate the energy range of valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the Standard Model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on Ah→hhZ→4b+2lAh\to hhZ\to 4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.Comment: 43 pages, 12 figures; v3: minor corrections, published in Physical Review

    Spectral properties of Bunimovich mushroom billiards

    Full text link
    Properties of a quantum mushroom billiard in the form of a superconducting microwave resonator have been investigated. They reveal unexpected nonuniversal features such as, e.g., a supershell effect in the level density and a dip in the nearest-neighbor spacing distribution. Theoretical predictions for the quantum properties of mixed systems rely on the sharp separability of phase space - an unusual property met by mushroom billiards. We however find deviations which are ascribed to the presence of dynamic tunneling.Comment: 4 pages, 7 .eps-figure

    Nonlinear projective filtering in a data stream

    Full text link
    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.Comment: 8 page

    Universality in chaotic quantum transport: The concordance between random matrix and semiclassical theories

    Get PDF
    Electronic transport through chaotic quantum dots exhibits universal, system independent, properties, consistent with random matrix theory. The quantum transport can also be rooted, via the semiclassical approximation, in sums over the classical scattering trajectories. Correlations between such trajectories can be organized diagrammatically and have been shown to yield universal answers for some observables. Here, we develop the general combinatorial treatment of the semiclassical diagrams, through a connection to factorizations of permutations. We show agreement between the semiclassical and random matrix approaches to the moments of the transmission eigenvalues. The result is valid for all moments to all orders of the expansion in inverse channel number for all three main symmetry classes (with and without time reversal symmetry and spin-orbit interaction) and extends to nonlinear statistics. This finally explains the applicability of random matrix theory to chaotic quantum transport in terms of the underlying dynamics as well as providing semiclassical access to the probability density of the transmission eigenvalues.Comment: Refereed version. 5 pages, 4 figure

    Resistance Breeding in Apple at Dresden-Pillnitz

    Get PDF
    Resistance breeding in apple has a long tradition at the Institute of Fruit Breeding now Julius Kuehn-institute in Dresden-Pillnitz. The breeding was aimed at the production of multiple resistance cultivars to allow a more sustainable and environmentally friendly production of apple. In the last decades a series of resistant cultivars (Re®-cultivars) bred in Dresden-Pillnitz has been released, ‘Recolor’ and ‘Rekarda’ in 2006. The main topic in the resistance breeding programme was scab resistance and the donor of scab resistance in most cultivars was Malus x floribunda 821. Due to the development of strains that are able to overcome resistance genes inherited by M. x floribunda 821 and due to the fact that single resistance genes can be broken easily, pyramiding of resistance genes is necessary. Besides scab, fire blight and powdery mildew are the main disease for which a pyramiding of genes is aspired in Pillnitz. Biotechnical approaches are necessary for the early detection of pyramided resistance genes in breeding clones. This paper will give an overview of the resistance breeding of apple in Pillnitz and the methods used

    The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Get PDF
    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given
    • …
    corecore