Particle physics model building within the context of string theory suggests
that further copies of the Higgs boson sector may be expected. Concerns
regarding tree-level flavor changing neutral currents are easiest to allay if
little or no couplings of next generation Higgs bosons are allowed to Standard
Model fermions. We detail the resulting general Higgs potential and mass
spectroscopy in both a Standard Model extension and a supersymmetric extension.
We present the important experimental constraints from meson-meson mixing,
loop-induced b→sγ decays and LEP2 direct production limits. We
investigate the energy range of valid perturbation theory of these ideas. In
the supersymmetric context we present a class of examples that marginally aids
the fine-tuning problem for parameter space where the lightest Higgs boson mass
is greater than the Standard Model limit of 114 GeV. Finally, we study collider
physics signatures generic to next generation Higgs bosons, with special
emphasis on Ah→hhZ→4b+2l signal events, and describe the capability of
discovery at the Large Hadron Collider.Comment: 43 pages, 12 figures; v3: minor corrections, published in Physical
Review