84 research outputs found
Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?
Femtosecond pump-probe second-harmonic generation (SHG) and transient linear
reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in
air to analyze whether the electron temperature affects Fresnel factors or
nonlinear susceptibilities, or both. Sensitivity to electron temperatures was
attained by using photon energies near the interband transition threshold. We
find that the nonlinear susceptibility carries the electron temperature
dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel
factors. This contrasting behavior emphasizes that SHG is not a priori
sensitive to electron dynamics at surfaces or interfaces, notwithstanding its
cause.Comment: 11 pages, 4 figure
Evaluation of animal-based indicators to be used in a welfare assessment protocol for sheep
Sheep are managed under a variety of different environments (continually outdoors, partially outdoors with seasonal or diurnal variation, continuously indoors) and for different purposes, which makes assessing welfare challenging. This diversity means that resource-based indicators are not particularly useful and, thus, a welfare assessment scheme for sheep, focusing on animal-based indicators, was developed. We focus specifically on ewes, as the most numerous group of sheep present on farm, although many of the indicators may also have relevance to adult male sheep. Using the Welfare Quality\uae framework of four Principles and 12 Criteria, we considered the validity, reliability, and feasibility of 46 putative animal-based indicators derived from the literature for these criteria. Where animal-based indicators were potentially unreliably or were not considered feasible, we also considered the resource-based indicators of access to water, stocking density, and floor slipperiness. With the exception of the criteria "Absence of prolonged thirst," we suggest at least one animal-based indicator for each welfare criterion. As a minimum, face validity was available for all indicators; however, for many, we found evidence of convergent validity and discriminant validity (e.g., lameness as measured by gait score, body condition score). The reliability of most of the physical and health measures has been tested in the field and found to be appropriate for use in welfare assessment. However, for the majority of the proposed behavioral indicators (lying synchrony, social withdrawal, postures associated with pain, vocalizations, stereotypy, vigilance, response to surprise, and human approach test), this still needs to be tested. In conclusion, the comprehensive assessment of sheep welfare through largely animal-based measures is supported by the literature through the use of indicators focusing on specific aspects of sheep biology. Further work is required for some indicators to ensure that measures are reliable when used in commercial settings
Cowries in the archaeology of West Africa: the present picture
Despite the perceived importance of cowrie shells as indicators of long-distance connections in the West African past, their distribution and consumption patterns in archaeological contexts remain surprisingly underexplored, a gap that is only partly explicable by the sparse distribution of archaeological sites within the sub-continent. General writings on the timeline of importation of cowries into West Africa often fail to take into account the latest archaeological evidence and rely instead on accounts drawn from historical or ethnographic documents. This paper is based on a first-hand assessment of over 4500 shells from 78 sites across West Africa, examining chronology, shell species and processes of modification to assess what distribution patterns can tell us about the history of importation and usage of cowries. These first-hand analyses are paralleled by a consideration of published materials. We re-examine the default assumption that two distinct routes of entry existed — one overland from North Africa before the fifteenth century, another coming into use from the time sea links were established with the East African coast and becoming predominant by the middle of the nineteenth century. We focus on the eastern part of West Africa, where the importance of imported cowries to local communities in relatively recent periods is well known and from where we have a good archaeological sample. The conclusion is that on suitably large assemblages shell size can be an indication of provenance and that, while the present archaeological picture seems largely to confirm historical sources, much of this may be due to the discrepancy in archaeological data available from the Sahara/Sahel zone compared to the more forested regions of the sub-continent. Future archaeological work will clarify this matter
Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases
Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.Molecular Epidemiolog
Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease
The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
High concentrations of middle ear antimicrobial peptides and proteins and proinflammatory cytokines are associated with detection of middle ear pathogens in children with recurrent acute otitis media
Recurrent and chronic otitis media (OM) are often refractory to antibiotics due to bacterial persistence in biofilm within the middle ear. In vitro and in vivo studies have demonstrated that antimicrobial proteins and peptides (AMPs) are bactericidal against otopathogens, indicating potential therapeutic value for recalcitrant OM. We measured concentrations of 6 AMPs and 14 cytokines in middle ear effusion (MEE) from 67 children undergoing ventilation tube insertion for recurrent acute OM. Sixty one percent of children had bacterial otopathogens detected in their MEE, 39% by PCR and 22% by PCR and culture. Groups were defined as: PCR-negative/culture-negative (absence of bacterial otopathogen), n = 26; PCR-positive/culture-negative (presence of nonculturable bacterial otopathogen), n = 26; PCR-positive/culture-positive (presence of culturable bacterial otopathogen), n = 15. Age, antibiotic usage, day-care attendance, presence of respiratory viruses in MEE and number of AOM episodes were similar between groups. AMP and cytokine concentrations were higher in children with bacterial otopathogens in their MEE compared to those with no bacterial otopathogens. Median concentrations of AMPs (except HBD2) were 3 to 56-fold higher in MEE from children with bacterial otopathogens detected in their MEE (P ≤ 0.01). Similarly, median cytokine concentrations (except TGFβ) were >16-fold higher in MEE with bacterial otopathogens detected (P ≤ 0.001). This is the first study to measure AMPs in MEE and together with the cytokine data, results suggest that elevated AMPs and cytokines in MEE are a marker of inflammation and bacterial persistence. AMPs may play an important role in OM pathogenesis
- …