12 research outputs found
Roadmap on dynamics of molecules and clusters in the gas phase
This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science
Different Flavors of Nonadiabatic Molecular Dynamics
The BornâOppenheimer approximation constitutes a cornerstone of our understanding of molecules and their reactivity, partly because it introduces a somewhat simplified representation of the molecular wavefunction. However, when a molecule absorbs light containing enough energy to trigger an electronic transition, the simplistic nature of the molecular wavefunction offered by the BornâOppenheimer approximation breaks down as a result of the now nonânegligible coupling between nuclear and electronic motion, often coined nonadiabatic couplings. Hence, the description of nonadiabatic processes implies a change in our representation of the molecular wavefunction, leading eventually to the design of new theoretical tools to describe the fate of an electronicallyâexcited molecule. This Overview focuses on this quantityâthe total molecular wavefunctionâand the different approaches proposed to describe theoretically this complicated object in nonâBornâOppenheimer conditions, namely the BornâHuang and ExactâFactorization representations. The way each representation depicts the appearance of nonadiabatic effects is then revealed by using a model of a coupled protonâelectron transfer reaction. Applying approximations to the formally exact equations of motion obtained within each representation leads to the derivation, or proposition, of different strategies to simulate the nonadiabatic dynamics of molecules. Approaches like quantum dynamics with fixed and timeâdependent grids, traveling basis functions, or mixed quantum/classical like surface hopping, Ehrenfest dynamics, or coupledâtrajectory schemes are described in this Overview
TDDFT and quantum-classical dynamics: A universal tool describing the dynamics of matter
Time-dependent density functional theory (TDDFT) is currently the most efficient approach allowing to describe electronic dynamics in complex systems, from isolated molecules to the condensed phase. TDDFT has been employed to investigate an extremely wide range of time-dependent phenomena, as spin dynamics in solids, charge and energy transport in nanoscale devices, and photoinduced exciton transfer in molecular aggregates. It is therefore nearly impossible to give a general account of all developments and applications of TDDFT in material science, as well as in physics and chemistry. A large variety of aspects are covered throughout these volumes. In the present chapter, we will limit our presentation to the description of TDDFT developments and applications in the field of quantum molecular dynamics simulations in combination with trajectory-based approaches for the study of nonadiabatic excited-state phenomena. We will present different quantum-classical strategies used to describe the coupled dynamics of electrons and nuclei underlying nonadiabatic processes. In addition, we will give an account of the most recent applications with the aim of illustrating the nature of the problems that can be addressed with the help of these approaches. The potential, as well as the limitations, of the presented methods is discussed, along with possible avenues for future developments in TDDFT and nonadiabatic dynamics