9 research outputs found

    Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clonal propagation is highly desired especially for valuable horticultural crops. The method with the potentially highest multiplication rate is regeneration via somatic embryogenesis. However, this mode of propagation is often hampered by the occurrence of developmental aberrations and non-embryogenic callus. Therefore, the developmental process of somatic embryogenesis was analysed in the ornamental crop <it>Cyclamen persicum </it>by expression profiling, comparing different developmental stages of embryogenic cell cultures, zygotic vs. somatic embryos and embryogenic vs. non-embryogenic cell cultures.</p> <p>Results</p> <p>The analysis was based on a cDNA microarray representing 1,216 transcripts and was exemplarily validated by realtime PCR. For this purpose relative transcript abundances of homologues of a putative receptor kinase, two different glutathione S-transferases (GST), a xyloglucan endotransglycosylase (XET) and a peroxidase (POX) were quantitatively measured by realtime PCR for three different comparisons. In total, 417 genes were found to be differentially expressed. Gene Ontology annotation revealed that transcripts coding for enzymes that are active in the extracellular compartment (apoplast) were significantly overrepresented in several comparisons. The expression profiling results are underpinned by thorough histological analyses of somatic and zygotic embryos.</p> <p>Conclusions</p> <p>The putative underlying physiological processes are discussed and hypotheses on improvement of the protocol for <it>in vitro </it>somatic embryogenesis in <it>Cyclamen persicum </it>are deduced. A set of physiological markers is proposed for efficient molecular control of the process of somatic embryogenesis in <it>C. persicum</it>. The general suitability of expression profiling for the development and improvement of micropropagation methods is discussed.</p

    Walker 256 tumor growth suppression by crotoxin involves formyl peptide receptors and lipoxin a(4)

    Get PDF
    We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A(4). Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A 4 and its natural analogue 15-epi-LXA(4) 4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A 4 and 15-epi-LXA 4, which might inhibit both tumor growth and formation of new vessels via FPRs.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (fellowship-CAPES)PAP (fellowship-Secretaria da Saude do Estado de Sao Paulo)FAPESP [07/52447-8]Guggenheim FoundationSpecial Laboratory of Pain and Signaling, Butantan Institute, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, BrazilCEIS/Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, BrazilLaboratory of Pathophysiology, Butantan Institute, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, BrazilDepartment of Natural Sciences, Mathematics and Education, Agricultural Sciences Center, Federal University of São Carlos, Rodovia Anhanguera Km 174, 13600-970 Araras, SP, BrazilLaboratory of Inflammation and Vascular Pharmacology, Federal University of São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, BrazilDepartment of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, 05508-900 São Paulo, SP, BrazilDepartment of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, 05508-900 São Paulo, SP, BrazilLaboratory of Inflammation and Vascular Pharmacology, Federal University of São Paulo, Rua São Nicolau 210, 09913-030 Diadema, SP, BrazilFAPESP: 07/52447-8Web of Scienc

    Intrauterine food restriction impairs the lipogenesis process in the mesenteric adipocytes from low-birth-weight rats into adulthood

    Get PDF
    BackgroundIntrauterine food restriction (IFR) during pregnancy is associated with low birth weight (LBW) and obesity in adulthood. It is known that white adipose tissue (WAT) plays critical metabolic and endocrine functions; however, this tissue’s behavior before weight gain and obesity into adulthood is poorly studied. Thus, we evaluated the repercussions of IFR on the lipogenesis and lipolysis processes in the offspring and described the effects on WAT inflammatory cytokine production and secretion.MethodsWe induced IFR by providing gestating rats with 50% of the necessary chow daily amount during all gestational periods. After birth, we monitored the offspring for 12 weeks. The capacity of isolated fat cells from mesenteric white adipose tissue (meWAT) to perform lipogenesis (14C-labeled glucose incorporation into lipids) and lipolysis (with or without isoproterenol) was assessed. The expression levels of genes linked to these processes were measured by real-time PCR. In parallel, Multiplex assays were conducted to analyze pro-inflammatory markers, such as IL-1, IL-6, and TNF-α, in the meWAT.ResultsTwelve-week-old LBW rats presented elevated serum triacylglycerol (TAG) content and attenuated lipogenesis and lipolysis compared to control animals. Inflammatory cytokine levels were increased in the meWAT of LBW rats, evidenced by augmented secretion by adipocytes and upregulated gene and protein expression by the tissue. However, there were no significant alterations in the serum cytokines content from the LBW group. Additionally, liver weight, TAG content in the hepatocytes and serum glucocorticoid levels were increased in the LBW group.ConclusionThe results demonstrate that IFR throughout pregnancy yields LBW offspring characterized by inhibited lipogenesis and lipolysis and reduced meWAT lipid storage at 12 weeks. The increased serum TAG content may contribute to the augmented synthesis and secretion of pro-inflammatory markers detected in the LBW group

    Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    Get PDF
    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity

    PlanTAPDB, a Phylogeny-Based Resource of Plant Transcription-Associated Proteins

    No full text
    Diversification of transcription-associated protein (TAP) families during land plant evolution is a key process yielding increased complexity of plant life. Understanding the evolutionary relationships between these genes is crucial to gain insight into plant evolution. We have determined a substantial set of TAPs that are focused on, but not limited to, land plants using PSI-BLAST searches and subsequent filtering and clustering steps. Phylogenies were created in an automated way using a combination of distance and maximum likelihood methods. Comparison of the data to previously published work confirmed their accuracy and usefulness for the majority of gene families. Evidence is presented that the flowering plant apical stem cell regulator WUSCHEL evolved from an ancestral homeobox gene that was already present after the water-to-land transition. The presence of distinct expanded gene families, such as COP1 and HIT in moss, is discussed within the evolutionary backdrop. Comparative analyses revealed that almost all angiosperm transcription factor families were already present in the earliest land plants, whereas many are missing among unicellular algae. A global analysis not only of transcription factors but also of transcriptional regulators and novel putative families is presented. A wealth of data about plant TAP families and all data accrued throughout their automated detection and analysis are made available via the PlanTAPDB Web interface. Evolutionary relationships of these genes are readily accessible to the nonexpert at a mouse-click. Initial analyses of selected gene families revealed that PlanTAPDB can easily be exerted for knowledge discovery

    SGMS2 in primary osteoporosis with facial nerve palsy

    No full text
    Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.Peer reviewe

    Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A 4

    Get PDF
    We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs

    Dexamethasone-Induced Adipose Tissue Redistribution and Metabolic Changes: Is Gene Expression the Main Factor? An Animal Model of Chronic Hypercortisolism

    No full text
    Chronic hypercortisolism has been associated with the development of several metabolic alterations, mostly caused by the effects of chronic glucocorticoid (GC) exposure over gene expression. The metabolic changes can be partially explained by the GC actions on different adipose tissues (ATs), leading to central obesity. In this regard, we aimed to characterize an experimental model of iatrogenic hypercortisolism in rats with significant AT redistribution. Male Wistar rats were distributed into control (CT) and GC-treated, which received dexamethasone sodium phosphate (0.5 mg/kg/day) by an osmotic minipump, for 4 weeks. GC-treated rats reproduced several characteristics observed in human hypercortisolism/Cushing’s syndrome, such as HPA axis inhibition, glucose intolerance, insulin resistance, dyslipidemia, hepatic lipid accumulation, and AT redistribution. There was an increase in the mesenteric (meWAT), perirenal (prWAT), and interscapular brown (BAT) ATs mass, but a reduction of the retroperitoneal (rpWAT) mass compared to CT rats. Overexpressed lipolytic and lipogenic gene profiles were observed in white adipose tissue (WAT) of GC rats as BAT dysfunction and whitening. The AT remodeling in response to GC excess showed more importance than the increase of AT mass per se, and it cannot be explained just by GC regulation of gene transcription

    Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling

    No full text
    corecore