260 research outputs found
The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000
To measure the floor in interplanetary magnetic field and estimate the time-
invariant open magnetic flux of Sun, it is necessary to know a part of magnetic
field of Sun carried away by CMEs. In contrast with previous papers, we did not
use global solar parameters: we identified different large-scale types of solar
wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs)
and calculated magnitude of interplanetary magnetic field B averaged over 2
Carrington rotations. The floor of magnetic field is estimated as B value at
solar cycle minimum when the ICMEs were not observed and it was calculated to
be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous
results.Comment: 10 pages, 2 figures, submitted in GR
Determining Latitudinal Extent of Energetic Electron Precipitation Using MEPED On-Board NOAA/POES
Energetic Electron Precipitation (EEP) from the plasma sheet and the radiation belts ionizes the polar lower thermosphere and mesosphere. EEP increases the production of NOx and HOx, which will catalytically destroy ozone, an important element of atmospheric dynamics. Therefore, measurement of the latitudinal extent of the precipitation boundaries is important in quantifying the atmospheric effects of the Sun-Earth interaction. This study uses measurements by the Medium Energy Proton Electron Detector (MEPED) of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and their variability with geomagnetic activity and solar wind drivers. Variation of the boundaries for different electron energies and Magnetic Local Time (MLT) is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The highest correlation was found for the pressure-corrected Dst index when applying a linear regression model. A model of the equatorward EEP boundary is developed separately for three different energy channels, >43, >114, and >292 keV, and for 3 hour MLT sectors. For >43 keV EEP, 80% of the equatorward boundaries predicted by the model are within ±2.2° cgmlat. The model exhibits a solar cycle bias where it systematically exaggerates the equatorward movement of the EEP region during solar minimum. The highest accuracy of the model is found in periods dominated by corotating interaction regions/high speed solar wind streams. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.publishedVersio
Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts
The NASA STEREO mission opened up the possibility to forecast the arrival
times, speeds and directions of solar transients from outside the Sun-Earth
line. In particular, we are interested in predicting potentially geo-effective
Interplanetary Coronal Mass Ejections (ICMEs) from observations of density
structures at large observation angles from the Sun (with the STEREO
Heliospheric Imager instrument). We contribute to this endeavor by deriving
analytical formulas concerning a geometric correction for the ICME speed and
arrival time for the technique introduced by Davies et al. (2012, ApJ, in
press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a
circle propagates outward, along a plane specified by a position angle (e.g.
the ecliptic), with constant angular half width (lambda). This is an extension
to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and
Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage
that it is possible to assess clearly, in contrast to previous models, if a
particular location in the heliosphere, such as a planet or spacecraft, might
be expected to be hit by the ICME front. Our correction formulas are especially
significant for glancing hits, where small differences in the direction greatly
influence the expected speeds (up to 100-200 km/s) and arrival times (up to two
days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the
geometric correction becomes very similar to the one derived by M\"ostl et al.
(2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic
expressions can also be used for empirical or analytical models to predict the
1 AU arrival time of an ICME by correcting for effects of hits by the flank
rather than the apex, if the width and direction of the ICME in a plane are
known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
Recent Developments of NEMO: Detection of Solar Eruptions Characteristics
The recent developments in space instrumentation for solar observations and
telemetry have caused the necessity of advanced pattern recognition tools for
the different classes of solar events. The Extreme ultraviolet Imaging
Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new
class of eruptive events which are often identified as signatures of Coronal
Mass Ejection (CME) initiations on solar disk. It is evident that a crucial
task is the development of an automatic detection tool of CMEs precursors. The
Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an
operational tool that detects automatically solar eruptions using EIT image
sequences. NEMO applies techniques based on the general statistical properties
of the underlying physical mechanisms of eruptive events on the solar disc. In
this work, the most recent updates of NEMO code - that have resulted to the
increase of the recognition efficiency of solar eruptions linked to CMEs - are
presented. These updates provide calculations of the surface of the dimming
region, implement novel clustering technique for the dimmings and set new
criteria to flag the eruptive dimmings based on their complex characteristics.
The efficiency of NEMO has been increased significantly resulting to the
extraction of dimmings observed near the solar limb and to the detection of
small-scale events as well. As a consequence, the detection efficiency of CMEs
precursors and the forecasts of CMEs have been drastically improved.
Furthermore, the catalogues of solar eruptive events that can be constructed by
NEMO may include larger number of physical parameters associated to the dimming
regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images
The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods
to determine the average direction and velocity of coronal mass ejections
(CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such
as the HIs onboard the STEREO spacecraft. Both methods assume a constant
velocity in their descriptions of the time-elongation profiles of CMEs, which
are used to fit the observed time-elongation data. Here, we analyze the effect
of aerodynamic drag on CMEs propagating through interplanetary space, and how
this drag affects the result of the F\Phi and HM fitting methods. A simple drag
model is used to analytically construct time-elongation profiles which are then
fitted with the two methods. It is found that higher angles and velocities give
rise to greater error in both methods, reaching errors in the direction of
propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods,
respectively. This is due to the physical accelerations of the CMEs being
interpreted as geometrical accelerations by the fitting methods. Because of the
geometrical definition of the HM fitting method, it is affected by the
acceleration more greatly than the F\Phi fitting method. Overall, we find that
both techniques overestimate the initial (and final) velocity and direction for
fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that
arrival times at 1 AU would be predicted early (by up to 12 hours). We also
find that the direction and arrival time of a wide and decelerating CME can be
better reproduced by the F\Phi due to the cancellation of two errors:
neglecting the CME width and neglecting the CME deceleration. Overall, the
inaccuracies of the two fitting methods are expected to play an important role
in the prediction of CME hit and arrival times as we head towards solar maximum
and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page
Recommended from our members
The variation of geomagnetic storm duration with intensity
Variability in the near-Earth solar wind conditions can adversely affect a number of ground- and space-based technologies. Such space-weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for scheduling the resumption of safe operating of affected infrastructure. It is therefore important to understand the degree to which storm intensity and duration are correlated. The long-running, global geomagnetic disturbance index, aa , has recently been recalibrated to account for the geographic distribution of the component stations. We use this aaH index to analyse the relationship between geomagnetic storm intensity and storm duration over the past 150 years, further adding to our understanding of the climatology of geomagnetic activity. Defining storms using a peak-above-threshold approach, we find that more intense storms have longer durations, as expected, though the relationship is nonlinear. The distribution of durations for a given intensity is found to be approximately log-normal. On this basis, we provide a method to probabilistically predict storm duration given peak intensity, and test this against the aaH dataset. By considering the average profile of storms with a superposed-epoch analysis, we show that activity becomes less recurrent on the 27-day timescale with increasing intensity. This change in the dominant physical driver, and hence average profile, of geomagnetic activity with increasing threshold is likely the reason for the nonlinear behaviour of storm duration
The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation
The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age
Influence of large-scale interplanetary structures on the propagation of solar energetic particles: The Multispacecraft event on 2021 October 9
An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R ≲ 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48° east from Earth (ϕ = E48°), STEREO-A (at R = 0.96 au, ϕ = E39°), Solar Orbiter (SolO; at R = 0.68 au, ϕ = E15°), BepiColombo (at R = 0.33 au, ϕ = W02°), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies ≳13 MeV and an accumulation of ≲5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events
- …