260 research outputs found

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    Determining Latitudinal Extent of Energetic Electron Precipitation Using MEPED On-Board NOAA/POES

    Get PDF
    Energetic Electron Precipitation (EEP) from the plasma sheet and the radiation belts ionizes the polar lower thermosphere and mesosphere. EEP increases the production of NOx and HOx, which will catalytically destroy ozone, an important element of atmospheric dynamics. Therefore, measurement of the latitudinal extent of the precipitation boundaries is important in quantifying the atmospheric effects of the Sun-Earth interaction. This study uses measurements by the Medium Energy Proton Electron Detector (MEPED) of six NOAA/POES and EUMETSAT/METOP satellites from 2004 to 2014 to determine the latitudinal boundaries of EEP and their variability with geomagnetic activity and solar wind drivers. Variation of the boundaries for different electron energies and Magnetic Local Time (MLT) is studied. Regression analyses are applied to determine the best predictor variable based on solar wind parameters and geomagnetic indices. The highest correlation was found for the pressure-corrected Dst index when applying a linear regression model. A model of the equatorward EEP boundary is developed separately for three different energy channels, >43, >114, and >292 keV, and for 3 hour MLT sectors. For >43 keV EEP, 80% of the equatorward boundaries predicted by the model are within ±2.2° cgmlat. The model exhibits a solar cycle bias where it systematically exaggerates the equatorward movement of the EEP region during solar minimum. The highest accuracy of the model is found in periods dominated by corotating interaction regions/high speed solar wind streams. The result will be a key element for constructing a model of EEP variability to be applied in atmosphere climate models.publishedVersio

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases

    Full text link
    This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic

    Recent Developments of NEMO: Detection of Solar Eruptions Characteristics

    Full text link
    The recent developments in space instrumentation for solar observations and telemetry have caused the necessity of advanced pattern recognition tools for the different classes of solar events. The Extreme ultraviolet Imaging Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new class of eruptive events which are often identified as signatures of Coronal Mass Ejection (CME) initiations on solar disk. It is evident that a crucial task is the development of an automatic detection tool of CMEs precursors. The Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an operational tool that detects automatically solar eruptions using EIT image sequences. NEMO applies techniques based on the general statistical properties of the underlying physical mechanisms of eruptive events on the solar disc. In this work, the most recent updates of NEMO code - that have resulted to the increase of the recognition efficiency of solar eruptions linked to CMEs - are presented. These updates provide calculations of the surface of the dimming region, implement novel clustering technique for the dimmings and set new criteria to flag the eruptive dimmings based on their complex characteristics. The efficiency of NEMO has been increased significantly resulting to the extraction of dimmings observed near the solar limb and to the detection of small-scale events as well. As a consequence, the detection efficiency of CMEs precursors and the forecasts of CMEs have been drastically improved. Furthermore, the catalogues of solar eruptive events that can be constructed by NEMO may include larger number of physical parameters associated to the dimming regions.Comment: 12 Pages, 5 figures, submitted to Solar Physic

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic

    Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images

    Full text link
    The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods to determine the average direction and velocity of coronal mass ejections (CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such as the HIs onboard the STEREO spacecraft. Both methods assume a constant velocity in their descriptions of the time-elongation profiles of CMEs, which are used to fit the observed time-elongation data. Here, we analyze the effect of aerodynamic drag on CMEs propagating through interplanetary space, and how this drag affects the result of the F\Phi and HM fitting methods. A simple drag model is used to analytically construct time-elongation profiles which are then fitted with the two methods. It is found that higher angles and velocities give rise to greater error in both methods, reaching errors in the direction of propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods, respectively. This is due to the physical accelerations of the CMEs being interpreted as geometrical accelerations by the fitting methods. Because of the geometrical definition of the HM fitting method, it is affected by the acceleration more greatly than the F\Phi fitting method. Overall, we find that both techniques overestimate the initial (and final) velocity and direction for fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that arrival times at 1 AU would be predicted early (by up to 12 hours). We also find that the direction and arrival time of a wide and decelerating CME can be better reproduced by the F\Phi due to the cancellation of two errors: neglecting the CME width and neglecting the CME deceleration. Overall, the inaccuracies of the two fitting methods are expected to play an important role in the prediction of CME hit and arrival times as we head towards solar maximum and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age

    Influence of large-scale interplanetary structures on the propagation of solar energetic particles: The Multispacecraft event on 2021 October 9

    Get PDF
    An intense solar energetic particle (SEP) event was observed on 2021 October 9 by multiple spacecraft distributed near the ecliptic plane at heliocentric radial distances R ≲ 1 au and within a narrow range of heliolongitudes. A stream interaction region (SIR), sequentially observed by Parker Solar Probe (PSP) at R = 0.76 au and 48° east from Earth (ϕ = E48°), STEREO-A (at R = 0.96 au, ϕ = E39°), Solar Orbiter (SolO; at R = 0.68 au, ϕ = E15°), BepiColombo (at R = 0.33 au, ϕ = W02°), and near-Earth spacecraft, regulated the observed intensity-time profiles and the anisotropic character of the SEP event. PSP, STEREO-A, and SolO detected strong anisotropies at the onset of the SEP event, which resulted from the fact that PSP and STEREO-A were in the declining-speed region of the solar wind stream responsible for the SIR and from the passage of a steady magnetic field structure by SolO during the onset of the event. By contrast, the intensity-time profiles observed near Earth displayed a delayed onset at proton energies ≳13 MeV and an accumulation of ≲5 MeV protons between the SIR and the shock driven by the parent coronal mass ejection (CME). Even though BepiColombo, STEREO-A, and SolO were nominally connected to the same region of the Sun, the intensity-time profiles at BepiColombo resemble those observed near Earth, with the bulk of low-energy ions also confined between the SIR and the CME-driven shock. This event exemplifies the impact that intervening large-scale interplanetary structures, such as corotating SIRs, have in shaping the properties of SEP events
    • …
    corecore