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Abstract Variability in the near-Earth solar wind conditions can adversely affect a number
of ground- and space-based technologies. Such space-weather impacts on ground infras-
tructure are expected to increase primarily with geomagnetic storm intensity, but also storm
duration, through time-integrated effects. Forecasting storm duration is also necessary for
scheduling the resumption of safe operating of affected infrastructure. It is therefore im-
portant to understand the degree to which storm intensity and duration are correlated. The
long-running, global geomagnetic disturbance index, aa, has recently been recalibrated to
account for the geographic distribution of the component stations. We use this aaH index
to analyse the relationship between geomagnetic storm intensity and storm duration over
the past 150 years, further adding to our understanding of the climatology of geomagnetic
activity. Defining storms using a peak-above-threshold approach, we find that more intense
storms have longer durations, as expected, though the relationship is nonlinear. The distri-
bution of durations for a given intensity is found to be approximately log-normal. On this
basis, we provide a method to probabilistically predict storm duration given peak inten-
sity, and test this against the aaH dataset. By considering the average profile of storms with
a superposed-epoch analysis, we show that activity becomes less recurrent on the 27-day
timescale with increasing intensity. This change in the dominant physical driver, and hence
average profile, of geomagnetic activity with increasing threshold is likely the reason for the
nonlinear behaviour of storm duration.

Keywords Magnetosphere · Geomagnetic disturbances

1. Introduction

A geomagnetic storm is a significant disturbance in the Earth’s magnetic field (e.g. Gonzalez
et al., 1994) due to specific sets of conditions in the near-Earth solar wind. Southward-
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orientated interplanetary magnetic field (IMF) can reconnect with the geomagnetic field of
the dayside magnetosphere resulting in the storage of energy in the lobes of the magnetotail
(Dungey, 1961). Reconnection associated with disturbances in the magnetotail current sheet
releases the stored energy and currents in the upper atmosphere are enhanced. This can
result in adverse effects in a number of ground- and space-based technologies, as well as
posing a threat to the health of astronauts and flight crew and passengers (Baker, 1998). In
particular, this substorm cycle of tail lobe energy storage and release can result in enhanced
ionospheric currents which can in turn lead to geomagnetically induced currents (GICs),
a quasi-DC signal, flowing through ground infrastructure such as power grids and pipelines
(Patel et al., 2016; Cannon et al., 2016). An induced DC current in AC power transformers
may create a half cycle saturation leading to degradation and breakdown. Thus geomagnetic
storms can affect today’s technologically centred society to great disruption and at great cost
(Eastwood et al., 2017; Oughton et al., 2017; Riley et al., 2018; Cannon et al., 2016).

GICs result from rapidly varying local geomagnetic fields, on the timescale of minutes
or less. Therefore geomagnetic indices (e.g. Dst, AE and Kp), which summarise global ge-
omagnetic variability on the timescale of hours, do not directly relate to the GIC drivers.
However, there is coupling across these timescales and spatial scales, with the largest GICs
occurring during geomagnetic storms (Trichtchenko and Boteler, 2004, 2007).

Space-weather forecasting often focuses on estimating the onset and intensity of geomag-
netic storms (Abunina et al., 2013; Lundstedt, Gleisner, and Wintoft, 2003; Joselyn, 1995).
But storm duration can also be an important secondary factor through time-integrated ef-
fects (Mourenas, Artemyev, and Zhang, 2018; Balan et al., 2016). Indeed, Lockwood et al.
(2016) showed that the time-integrated value of solar wind forcing, which measures the
net geomagnetic disturbance, was influenced both by the amplitude and duration of storms.
Therefore, a forecast of storm duration would be beneficial in the development of mitigation
plans for sensitive infrastructure and services, in terms of estimating when normal opera-
tions can resume. Thus it is important to quantify the relationship between storm intensity
and duration.

Surveys of the largest geomagnetic storms in the Dst index have included estimates of
storm duration (Echer, Gonzalez, and Tsurutani, 2008; Balan et al., 2016), though the re-
lation with storm intensity was not explicitly quantified. Using the Dst index, Yokoyama
and Kamide (1997) showed that the average duration of main and recovery phases of storms
increased with storm intensity across three broad categories (weak, moderate and strong) for
8 years of observations. A similar analysis was presented in Hutchinson, Wright, and Mi-
lan (2011) for Solar Cycle 23 but concluded that storm main phase duration increases with
intensity to a point, but then the relationship reverses for storms more intense than a peak
SYM–H index disturbance of −150 nT. Recently, Walach and Grocott (2019) analysed the
SYM–H index between 2010 and 2016 in a similar way to Hutchinson, Wright, and Milan
(2011) but concluded that there was no clear ordering of intensity by storm duration. Con-
versely, Vennerstrom et al. (2016) used the aa index to demonstrate an increase in average
storm duration across five peak intensity levels. The weakest storms had a median duration
of 6 hours and the most intense storms 30 hours, noting that the duration of the most intense
storms ranged from 12 to 93 hours. Xie et al. (2008) showed that, for large storms, precon-
ditioning of the magnetospheric system by prior solar wind conditions can increase storm
duration but found no evidence that it increases peak amplitude.

The long-running, global geomagnetic disturbance index, aa (Mayaud, 1971), has re-
cently been recalibrated to account for the geographic distribution of the component stations
(Lockwood et al., 2018a). In this study, we use this aaH index to analyse the relationship
between geomagnetic storm intensity and storm duration over the past 150 years, further
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adding to our understanding of the climatology of geomagnetic activity. In particular, we
construct and test a simple probabilistic forecast of storm duration based on storm intensity.

2. Data

Changes in magnetospheric current systems can result in magnetic fluctuations which can
be measured at a number of stations around the world with ground-based magnetometers.
These measurements are compiled into a variety of indices, including aa, Kp, Dst and AE,
which measure different properties of global geomagnetic activity. The aa index, created by
Mayaud (1971), is based on the k values devised by Bartels, Heck, and Johnston (1939).
The k values are made by ranking the range of variation in the observed horizontal or verti-
cal field component (whichever gives the larger value) in each 3-hour period into one of 10
categories. These categories are defined by quasi-logarithmic limits based on the station’s
proximity to the auroral oval and a k value of 0 to 9 is assigned. The aa index is a combina-
tion of measurements taken from two mid-latitude stations, in the UK and Australia, since
1868 which, by virtue of being in opposite hemispheres and roughly 10 hours apart in local
time, provide a quasi-global measure of geomagnetic activity with particular sensitivity to
the substorm current wedge (Lockwood, 2013).

The major disadvantage of aa is that it is compiled from just two stations, but that is nec-
essary in order to generate the series back to 1868, which is its major advantage. Lockwood
et al. (2018a) and Lockwood et al. (2018b) corrected aa for a number of factors. Firstly they
made allowance for the changing geographic location of the midnight sector auroral oval,
due to the secular change in Earth’s intrinsic geomagnetic field (giving different drifts of
the geomagnetic poles in the two hemispheres, as observed), which influences the proximity
of the stations to the most relevant current system, the nightside auroral electrojet of the
substorm current wedge. This improves the intercalibration of the different stations needed
to compile the aa series (three have been needed in each hemisphere to make a continu-
ous series since 1868). In addition, they allowed for the time-of-day/time-of-year response
pattern of the station (the “station sensitivity”) using a model of how it is influenced by
proximity to the auroral oval and by local ionospheric conductivity, thereby reducing the er-
rors introduced by using just two stations. The resulting index, called the “homogeneous aa
index”, aaH , has been tested by Lockwood et al. (2019) against the am index, generated in
a similar way to aa but using rings of 24 mid-latitude stations in both hemispheres (Mayaud
(1980), http://isgi.unistra.fr/indices_am.php), and was shown to perform considerably more
uniformly in local time than the original aa index. The analysis shown in the present pa-
per uses the aaH data but similar results have been achieved for the am index. The aaH

index runs from 1868 to present and definitive am data currently runs from 1959 to 2013.
Although am gives a more accurate representation of the instantaneous state of global geo-
magnetic activity (Lockwood et al., 2019), the advantage of aaH is that it provides an extra
century of observations which means that better statistics on large events are obtained.

3. Storm Definition

There are no universally agreed-upon criteria to classify geomagnetic storms in geomagnetic
time series, with definitions depending on the purpose of the study (Riley et al., 2018).
Vennerstrom et al. (2016) defined storms in the 3-hourly aa time series as events in which
the maximum value exceeds one of a set of limits which we refer to here as the “upper

http://isgi.unistra.fr/indices_am.php
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Figure 1 Examples of geomagnetic storm definitions using 3-hourly aaH data. The upper threshold deter-
mines if the event is included in the analysis. A lower threshold determines the duration of the event. The
period defined as a storm, when using an upper and lower threshold, is shown in red. Left: A slight dip below
the lower threshold means what an individual observer may regard as the tail of the storm has been cut off.
Right: A double peak shape suggests two storms may have been counted together as a single event.

threshold”. They defined the start and end of a storm as the times when aa rose above and
fell below a threshold of twice the mean of the whole dataset (40 nT): we here refer to this
as the “lower threshold”. Thus in their definition of an event, the start of the storm is where
aa first exceeds 40 nT prior to the peak, and the end is where it last exceeds 40 nT after the
peak. Thus multiple upper threshold crossings have the potential to constitute a single storm
(see also Figure 1). In the Vennerstrom et al. (2016) definition, aa continuously exceeds
the lower threshold in an event and so even a brief drop below it means that a new event
is counted as having started. Only storms associated with a sudden storm commencement
(SSC) were considered – definitive SSCs are defined by visual searches for sudden increases
in the northward component of the field measured at any one of five low-latitude stations.
This yielded a set of 2370 storms for the lowest upper threshold they considered (50 nT).
Kilpua et al. (2015) used 3-hourly aa data, but with an upper threshold of 100 nT and a
lower threshold of 50 nT. This gave 2073 storms and performed analysis on cumulatively
binned categories of storms larger than a certain value, beginning at 100 nT and increasing
in increments of 100 nT up to 600 nT. This upper and lower threshold method of storm
definition was also employed by Riley and Love (2017) for the Dst index.

Other approaches include that of Hutchinson, Wright, and Milan (2011) who identified
storms in SYM–H using a threshold approach of −80 nT and then proceeding to manually
inspect individual storms using knowledge of the characteristic storm trace and the solar
wind data. This was feasible because the study included only 143 events from a single solar
cycle, a relatively small sample compared to that enabled by the aaH dataset.

We follow a similar approach to Kilpua et al. (2015) and Vennerstrom et al. (2016)
for storm definition. However, we will follow a more data-informed approach to threshold
selection by following the percentile approach (Gonzalez et al., 1994). When categorising
Dst storms (in which storms are negative perturbations), Gonzalez et al. (1994) defined the
lowest 25% of Dst values as a weak storm, the lowest 8% as a moderate storm, and the
lowest 1% as a strong storm. Of course, the issue with this approach is that the percentile-
based thresholds will change with the interval considered. This variation will be greatest
with short data sequences and very high thresholds (e.g., the top 1% or higher).

Since a strong aaH storm has a positive value, we define a storm to start when the aaH

value is greater than the 90th percentile of the full 1868 – 2017 3-hour data sequence. The
end of the storm will be the last value greater than the 90th percentile. The 90th percentile of
aaH (1868 – 2017) is 40.1 nT, similar to that used in previous studies. For some parts of the
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Figure 2 Left: The number of storms as a function of peak intensity on a log–log scale. The data was grouped
into equal-size bins of 10 nT. Right: The number of storms as a function of storm duration on a log–log scale
plotted using bin width of three hours, the resolution of aaH , meaning every possible duration has a unique
bin.

analysis, we have also used an upper threshold to select storms of different peak intensity. As
in previous studies, an event must have a peak value over the upper threshold to be selected,
but the storm duration is nevertheless measured as the time spent over the lower threshold
(i.e., the upper threshold determines whether an event is classed as a storm and the lower
threshold determines its duration). Upper and lower thresholds are depicted in Figure 1.

A feature of this approach is that a single measurement that falls just below the lower
threshold brings an end to a storm. This is depicted in Figure 1 in which the tail at the
end of the storm is cut off. Another feature is that two events occurring close to each other
with respect to time will be classed as a single event if the index does not fall back below
the lower threshold in the interval between them. This double peak effect is depicted in
the plot on the right of Figure 1. While this approach may sometimes disagree with the
interpretation of a human observer, it gives a set of objectively defined storms, making our
analysis reproducible and readily applicable to the entire dataset.

4. Results

The number of storms in the aaH index can be seen in Figure 2 (Left). The data has been
grouped into bins of width 10 nT. The log–log scale reveals that the distribution of storms
follows an approximate power law. This result is in agreement with that from Riley (2012)
who found a power law in the occurrence of geomagnetic storms in the Dst index. The sharp
drop off associated with a power law can be seen in the probabilities of storm peak intensity
revealed by the complementary cumulative distribution function (CCDF) in Figure 3 (Left).

Similarly, the number of storms as a function of duration has a sharp drop off. Figure 2
(Right) reveals that the decrease is slightly less than a power law. The accompanying CCDF
in Figure 3 (Right) shows the drop off in a stepped fashion due to the quantisation of the
aaH index into 3-hour data-points.

The variation of mean storm duration with storm intensity, as measured by the upper
threshold, is presented in Figure 4. As expected, the general trend is that, as the upper
threshold is increased, the mean storm duration also increases. Of course, if storms have
a common recovery timescale and thus similar saw-tooth-like profile (see Section 5), storm
duration would be expected to increase monotonically with peak intensity. This result is in
qualitative agreement with Hutchinson, Wright, and Milan (2011) and Vennerstrom et al.
(2016), who noted an increase in storm duration for increasing storm intensities.
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Figure 3 Complementary Cumulative Distribution Functions (CCDFs) of peak intensity (left) and durations
(right) for all storms in the aaH index.

Figure 4 Mean storm duration (red line and left axis) and number of storms (blue line and right axis) as a
function of increasing storm intensity, as defined by the upper threshold value. Storms have been organised
into cumulative intensity bins for the upper threshold. The red line shows how the average duration increases
as the upper threshold is increased. Error bars are plus and minus one standard error on the mean. The blue
line and right-hand axis show the number of storms in each bin on a log scale.

We find the relation between intensity and duration to be nonlinear, with a plateau in
mean duration towards higher thresholds, at a level which selects approximately the top
50 – 100 storms. Yokoyama and Kamide (1997) noted a similar effect in a set of Dst storms
and state that storm intensity increases more than linearly with duration.

The above analysis uses cumulative bins of storm intensity, so there are common events
within bins. We now separate events using differential peak intensity bins of 70 – 90 nT,
90 – 110 nT, 110 – 150 nT, 150 – 190 nT, 190 – 230 nT, 230 – 300 nT, 300 – 400 nT, and
above 400 nT. The number of storms in each bin can be seen in Figure 5 and decreases with
intensity. Figure 5 does not represent the distribution function due to unequal bin widths (the
distribution function is shown in Figure 2). The bins were chosen to balance the granularity
of intensities examined and the number of events in each bin to ensure enough events for the
following statistical analysis.
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Figure 5 The number of storms
in each class of peak storm
intensity. Due to unequal bin
size, this does not represent a
distribution function.

The distribution of the storm durations in each intensity class broadly resembles that of a
log-normal distribution. This is shown for storms of all intensity classes in Figure 6. A log-
normal distribution is defined by the mean of the logarithm of the values, µ, and the standard
deviation of the logarithm of the values, σ. These parameters were found from the observed
durations in each intensity class through maximum likelihood estimation (MLE) and used
to create a log-normal distribution, plotted in Figure 6 in dark purple. The light purple dis-
tribution shows a histogram of the observed data as an estimate of the probability density
function (PDF). By eye, the log-normal distribution provides a reasonable first-order match
at all intensity thresholds. However, statistical testing suggests the log-normal distribution
may not properly capture the high density of storms with 3-hour durations. As this study is
primarily interested in larger intensity storms, we focus on using the log-normal fits for the
remainder of the study.

We further note here the quantisation of the aaH dataset into 3-hour intervals. The un-
derlying physical phenomenon, that of storm duration, is of course continuous. This issue is
commonplace in social and medical science for longitudinal studies through discrete-time
survival analysis (Allison, 1982; Singer and Willett, 1993; Carlin et al., 2005). These meth-
ods will be investigated in future study. However, here we follow the simpler log-normal
approach described above. The reason is twofold. Firstly, it would increase the complexity
of the models presented here and it is instructive to begin with this simple and well under-
stood approach. Secondly, for the purposes of the current study, we are not seeking physical
understanding through the shape of the distribution function and only require an estimate of
the gross properties of the distribution for use as a robust forecast tool.

For each of the peak intensity classes, we have calculated the values of µ and σ for
the log-normal fits to the duration distributions shown as the black points in Figure 7. The
intensity classes are plotted on the x-axis at the median value of the intensity of storms in
each class. It is clear from the points in the left panel of Figure 7 that µ increases as intensity
increases, agreeing with the previous results in Figure 4 (i.e., duration increases as intensity
increases). The parameter µ can be approximated as a function of storm intensity by

µ(intensity) = A ln(B intensity − C), (1)

where A, B and C are free parameters. A least squares fit was implemented, incorporating
the 33rd and 67th percentiles (i.e. the 1-sigma range) as the asymmetric uncertainty around
the median of each intensity bin and the standard error around µ. The coefficients A, B

and C were found to be 0.455, 4.632, 283.143, respectively, and this curve is plotted, along
with uncertainty bars, in Figure 7 (left). Although the fit is based on weighted bin-centres of
storm intensity, the equation can be used to interpolate for a given value of intensity.
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Figure 6 Storm durations for each class of peak intensity. The observed probability density function (PDF)
of durations is shown in the histogram, while a log-normal with the same mean and width parameters is
shown as the purple curve. The intensity classes represented in (a), (b), (c), (d), (e), (f), (g), and (h) are
70 – 90 nT, 90 – 110 nT, 110 – 150 nT, 150 – 190 nT, 190 – 230 nT, 230 – 300 nT, 300 – 400 nT, and above
400 nT, respectively.
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Figure 7 Variation of best-fit log-normal parameters to the observed storm duration PDF as a function of
storm intensity. Best-fit curves accounting for uncertainties in both variables are shown, mean storm duration
of the log-space (left) and the standard deviation of the log-space (right). The uncertainty bars for storm
intensity are the 33rd and 67th percentile (i.e. the 1-sigma range) around the median, for mean duration they
are the standard error of the mean and for standard deviation they are the standard error of the standard
deviation.

Given the error bars, σ can be approximated by a linear fit to give σ as a function of
the peak intensity. Figure 7 (right) shows the best-fit line which has a shallow gradient of
−5.08 × 10−4 and y-intercept at 0.659. The plot shows that the fit agrees with the points to
within the estimated errors for 5 out of the 8 intensity ranges (i.e., 62.5%) which is close
to the 65% figure expected for the 1σ errors employed and hence a linear fit is deemed
acceptable for our purposes.

The relations in Figure 7 can be used to produce an ideal log-normal distribution of
durations for a given storm peak intensity. This, in turn, can be used to give an estimate of
the probability of a storm of a given intensity exceeding a given duration. To test how well
this simple model works, we have made a comparison between the probability given by the
model and the observed frequency in the dataset. The aaH dataset was split up into two
equal-size sets composed of alternating years; a training dataset and a verification dataset.
The training set was used to derive coefficients for Equation 1 and the linear fit of σ and thus
create the model. The verification dataset was used to compute the observed probabilities,
thus ensuring an unbiased comparison. Figure 8 shows the comparison for the probability
of storms exceeding 12, 24, and 36 hours as a function of peak intensity. The black line
is the observed probability from the verification aaH dataset. The red line is the result of
implementation of Equation 1 and expression for σ. It is seen that the model gives a generally
good match to the observed probability but there are differences in detail. The largest storms
(>400 nT) are likely to last longer than 24 hours and have a probability of approximately
0.4 of lasting longer than 36 hours. The smallest storms (<100 nT) have a low probability
(0.2) of lasting longer than 12 hours. There is good agreement with the observed occurrence
frequencies.

To further quantify the agreement between the model and observations we consider the
associated reliability diagrams (Jolliffe and Stephenson, 2003), which compare the model
predicted probabilities with the observed occurrence rates. We construct the reliability dia-
gram by binning storms according to the model probability, PM , of exceeding a given dura-
tion. For each model probability bin, we then determine the observed frequential probability,
PO , as a fraction of events which were actually observed to exceed the given duration. The
model is reliable if PM = PO , i.e., follows the y = x line on the reliability diagram. A relia-
bility diagram is shown in Figure 9 for storms exceeding durations of 12, 24 and 36 hours.
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Figure 8 Comparison of observed and predicted storm durations. Plots show the probability a storm will
exceed a certain duration as a function of peak intensity. The red line computes µ from Equation 1 and σ
from the linear expression and uses these to compute the relevant probabilities. The black line is the observed
probability from the training dataset for comparison. The aaH dataset was split into two equal-size sets to
avoid bias in the comparison.

A 5-fold cross validation has been implemented such that independent test and training
datasets have been split in five different ways and the analysis carried out on each as shown
by the red lines. For all three of the categories shown it is seen that the curves are generally
slightly above the y = x line showing a systematic underestimation of storm duration. How-
ever, for the analysis on 24 and 36 hour storms the reliability curves become sporadic for
larger values of the model probability. This is due to a small sample size of events for which
the model gives a large probability of the storm having these durations and hence very few
observations with which to compute the frequential probability of the observations. On the
whole, where there is sufficient sample size, the model probability and observed probability
are in reasonably good agreement. To make this model more reliable it would require mod-
est calibration. A simple approach to this would be to scale the predicted probability by a
constant to reduce the systematic underestimation.

5. Superposed Epoch Analysis

Though Yokoyama and Kamide (1997) and Hutchinson, Wright, and Milan (2011) previ-
ously conducted a superposed-epoch analysis on geomagnetic storms with the Dst dataset,
a study using longer term aaH data is useful to help understand the intensity-duration re-
lations described in the previous sections. Figure 10 shows a superposed-epoch analysis of
the storms within each of the peak intensity classes. For each group, the t = 0 epoch time is
taken as the first data point which is on or over the lower threshold.
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Figure 9 Reliability diagrams comparing the model predicted probabilities of storms exceeding 12, 24 and
36 hours with the observed occurrence frequency. A 5-fold cross validation has been carried out and the result
of each shown in red. The grey line with a gradient of 1 shows the path of a truly reliable prediction.

The tendency for more intense storms to have longer durations is once again apparent.
The duration of the median for the six bins from least to most intense is 3, 6, 12, 21, 30,
and 36 hours, respectively. The smallest storms are almost symmetric in their rise/decay, but
with increasing peak intensity the shape becomes increasingly “saw tooth” in nature, with
a sudden rise and a long decay. Similarly, the time-of-peak intensity relative to the start of
the storm varies with peak intensity. For the lower intensity storms the peak of the median
occurs at the same time as the beginning of the storm. As the intensity class increases, the
peak of the median storm occurs later and exhibits a more gradual build up towards peak
intensity.

The 27-day solar rotation period (as observed from the Earth) is visible in the superposed-
epoch analysis when the time window is extended, as in Figure 11. For a peak intensity bin
of less than 200 nT, the 27-day repeating pattern is found albeit with a much lower intensity
in the repeat events. This is suggestive of corotating interaction regions (CIRs, Gosling
and Pizzo, 1999), which are known to drive predictable recurrent geomagnetic activity (e.g.
Owens et al., 2013).

6. Summary and Conclusions

In this study we have investigated the relationship between geomagnetic storm intensity
and duration. We defined storms in the aaH index by upper and lower thresholds where the
upper threshold determines whether an event is classed as a storm and the lower threshold
determines its duration.
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Figure 10 A superposed-epoch analysis for different storm intensities. The trigger to start an epoch is the
first measurement greater than or equal to the lower threshold. The white line represents the median, the pink
colour band represents the inter-quartile range and the purple represents the 10th – 90th percentile range. The
horizontal dashed line marks the lower threshold. The plots shown are for storms of peak intensity 40 – 60 nT
(top left), 60 – 80 nT (top right), 80 – 130 nT (middle left), 130 – 200 nT (middle right), 200 – 400 nT (bottom
left) and 400 + nT (bottom right).

Using this definition, we found that, on average, storm duration increases with storm in-
tensity, as expected, but in a nonlinear fashion. The median durations for the storms with
peak intensity in the classes 70 – 90 nT, 90 – 110 nT, 110 – 150 nT, 150 – 190 nT, 190 –
230 nT, 230 – 300 nT, 300 – 400 nT, and above 400 nT were found to be 6, 9, 15, 18, 21, 24,
27 and 33 hours, respectively. This is similar to Vennerstrom et al. (2016) who found in the
aa index that the weakest storms have a median duration of 6 hours and the strongest have a
median duration of 30 hours. The longest storm was 75 hours which is 18 hours shorter that
the 93 hour storm analysed by Vennerstrom et al. (2016).

The distribution of storm duration is approximately log-normal when considering storms
with peak intensity above around 150 nT. The log-normal parameters, µ and σ, computed
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Figure 11 Superposed-epoch analysis of small (left) and large (right) storms over a 33-day time window,
to look for recurrent signatures. Left: Superposed-epoch analysis for storms with peak intensity 80 – 130 nT
showing signs of 27-day repeat, indicating the presence of recurrent solar wind structures. Right: Super-
posed-epoch analysis for storms with peak intensities 300 – 400 nT with no 27-day repeat, indicating a relative
absence recurrence.

for a number of storm intensity classes revealed that µ increases monotonically with storm
intensity. However, this is not the case for σ. Expressions for µ and σ as logarithmic and
linear functions, respectively, of intensity were found, providing a method to estimate these
parameters for a given storm peak intensity. The obtained log-normal distribution can then
be used to find the probability of a storm of given intensity lasting longer than a certain
duration. This simple model was compared to the observed occurrence probability. Good
agreement is found. As expected, more intense storms had a higher probability of lasting
longer.

An analysis with reliability diagrams revealed that, while the model tends to underes-
timate the probability of a storm exceeding a given duration, the reliability curve follows
the gradient of the y = x line reasonably well. If the model was to be used operationally,
the predicted probabilities could be easily calibrated to match the observed occurrence fre-
quency.

Finally, a superposed-epoch analysis was presented shedding light on the general shape
of storms. More intense storms are shown to last longer and have their peak intensity further
into the storm. It was observed that 27 day recurrent behaviour becomes less apparent in
larger intensity storms, most likely reflecting the sources of the solar wind driving the storm.
This is likely the result of corotating interaction regions (CIRs) formed by the interaction
of fast and slow solar wind (Richardson, 2004). These structures can be long lasting and
repeatedly impact the magnetosphere for many solar rotations but do not cause the very
largest geomagnetic storms (Borovsky and Denton, 2006; Tsurutani et al., 2006). For storms
with a higher intensity, the repeating pattern disappears. This is due to the dominant driver of
very large geomagnetic storms being transient coronal mass ejections (CMEs) (Richardson,
Cliver, and Cane, 2001).

Future work could include a discrete-time survival analysis on storm duration. Although
this adds complexity, it would provide a more rigorous structure on which to base the work.
Another line of research will be to investigate whether the time history of an event could
provide further information such as by using an analogue forecast approach.
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