201 research outputs found

    Cancer: A new role for an old enemy

    Get PDF
    Drugs that change the shape of AKT, a protein kinase that promotes tumor growth, may be more effective than drugs that only target its enzymatic activity

    Synthesis of a series of novel 3,9-disubstituted phenanthrenes as analogues of known <i>N</i>-methyl-D-aspartate receptor allosteric modulators

    Get PDF
    9-Substituted phenanthrene-3-carboxylic acids have been reported to have allosteric modulatory activity at the NMDA receptor. This receptor is activated by the excitatory neurotransmitter L-glutamate and has been implicated in a range of neurological disorders such as schizophrenia, epilepsy and chronic pain and neurodegenerative disorders such as Alzheimer’s disease. Herein, the convenient synthesis of a wide range of novel 3,9-disubstituted phenanthrene derivatives starting from a few common intermediates is described. These new phenanthrene derivatives will help to clarify the structural requirements for allosteric modulation of the NMDA receptor

    Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome

    Get PDF
    © 2020, © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. Background: The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrheal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilized shotgun metagenomics to comprehensively characterize the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. Results: We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrheal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism. Conclusions: We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrheal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural, and genetic factors in contributing to microbiome differences between rural and urban populations

    Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles

    Full text link
    The back-reaction of baryons on the dark matter halo density profile is of great interest, not least because it is an important systematic uncertainty when attempting to detect the dark matter. Here, we draw on a large suite of high resolution cosmological hydrodynamical simulations, to systematically investigate this process and its dependence on the baryonic physics associated with galaxy formation. The inclusion of baryons results in significantly more concentrated density profiles if radiative cooling is efficient and feedback is weak. The dark matter halo concentration can in that case increase by as much as 30 (10) per cent on galaxy (cluster) scales. The most significant effects occur in galaxies at high redshift, where there is a strong anti-correlation between the baryon fraction in the halo centre and the inner slope of both the total and the dark matter density profiles. If feedback is weak, isothermal inner profiles form, in agreement with observations of massive, early-type galaxies. However, we find that AGN feedback, or extremely efficient feedback from massive stars, is necessary to match observed stellar fractions in groups and clusters, as well as to keep the maximum circular velocity similar to the virial velocity as observed for disk galaxies. These strong feedback models reduce the baryon fraction in galaxies by a factor of 3 relative to the case with no feedback. The AGN is even capable of reducing the baryon fraction by a factor of 2 in the inner region of group and cluster haloes. This in turn results in inner density profiles which are typically shallower than isothermal and the halo concentrations tend to be lower than in the absence of baryons.Comment: 20 pages, 14 figures, 1 table. MNRAS in press. Version 2: added a few references

    Telomere length measurement by qPCR in birds is affected by storage method of blood samples

    Get PDF
    Given the potential role of telomeres as biomarkers of individual health and ageing, there is an increasing interest in studying telomere dynamics in a wider range of taxa in the fields of ecology and evolutionary biology. Measuring telomere length across the lifespan in wild animal systems is essential for testing these hypotheses, and may be aided by archived blood samples collected as part of longitudinal field studies. However, sample collection, storage, and DNA extraction methods may influence telomere length measurement, and it may, therefore, be difficult to balance consistency in sampling protocol with making the most of available samples. We used two complementary approaches to examine the impacts of sample storage method on measurements of relative telomere length (RTL) by qPCR, particularly focusing on FTA (Flinders Technology Associates) cards as a long-term storage solution. We used blood samples from wandering albatrosses collected over 14 years and stored in three different ways (n = 179), and also blood samples from captive zebra finches (n = 30) that were each stored using three different methods. Sample storage method influenced RTL in both studies, and samples on FTA cards had significantly shorter RTL measurements. There was no significant correlation between RTL measured in zebra finch blood on FTA cards and the same samples stored either as frozen whole blood or as extracted DNA. These results highlight the importance of consistency of sampling protocol, particularly in the context of long-term field studies, and suggest that FTA cards should not be used as a long-term storage solution to measure RTL without validation

    Chemokine receptors (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [426, 425, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibiotics, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and "Atypical chemokine receptors", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as &#946;-chemokines; n= 28), CXC (also known as &#945;-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [675] and aliases

    Chemokine receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [431, 430, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibiotics, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and "Atypical chemokine receptors", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as &#946;-chemokines; n= 28), CXC (also known as &#945;-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [684] and aliases

    Chemokine receptors in GtoPdb v.2023.1

    Get PDF
    Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [438, 437, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibacterials, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and "Atypical chemokine receptors", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as &#946;-chemokines; n= 28), CXC (also known as &#945;-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [693] and aliases
    corecore