38 research outputs found

    Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth

    Get PDF
    R.J.P. was the recipient of a NERC studentship and Warwick University IAS fellowship. This work was supported in part by NERC grant NE/J02273X/1 and Leverhulme Trust grant RPG-2014-354 to A.D.M., D.J.E., and D.J.S.Summary. Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 1027 [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5–7] and frequently outnumber their cyanobacterial hosts [8]. Ultimately, cyanophage-induced lysis of infected cells results in the release of fixed carbon into the dissolved organic matter pool [9]. What is less well known is the functioning of photosynthesis during the relatively long latent periods of many cyanophages [10, 11]. Remarkably, the genomes of many cyanophage isolates contain genes involved in photosynthetic electron transport (PET) [12–18] as well as central carbon metabolism [14, 15, 19, 20], suggesting that cyanophages may play an active role in photosynthesis. However, cyanophage-encoded gene products are hypothesized to maintain or even supplement PET for energy generation while sacrificing wasteful CO2 fixation during infection [17, 18, 20]. Yet this paradigm has not been rigorously tested. Here, we measured the ability of viral-infected Synechococcus cells to fix CO2 as well as maintain PET. We compared two cyanophage isolates that share different complements of PET and central carbon metabolism genes. We demonstrate cyanophage-dependent inhibition of CO2 fixation early in the infection cycle. In contrast, PET is maintained throughout infection. Our data suggest a generalized strategy among marine cyanophages to redirect photosynthesis to support phage development, which has important implications for estimates of global primary production.Publisher PDFPeer reviewe

    Functional ecology of bacteriophages in the environment

    Get PDF
    Bacteriophages are as ubiquitous as their bacterial hosts and often more abundant. Understanding how bacteriophages control their bacterial host populations requires a number of different approaches. Bacteriophages can control bacterial populations through lysis, drive evolution of bacterial immunity systems through infection, provide a conduit for horizontal gene transfer and alter host metabolism by carriage of auxiliary metabolic genes. Understanding and quantifying how bacteriophages drive these processes, requires both technological developments to take measurements in situ, and laboratory-based studies to understand mechanisms. Technological advances have allowed quantification of the number of infected cells in situ, revealing far-lower levels than expected. Understanding how observations in laboratory conditions relate to what occurs in the environment, and experimental confirmation of the predicted function of phage genes from observations in environmental omics data, remains challenging

    Coordinated transcriptional response to environmental stress by a Synechococcus virus

    Get PDF
    Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon amongst cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible proteinand DNA polymerase respectively. Moreover, several of the upregulated genes were controlled by the hosts phoBR two-component system. We hypothesise that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Together, our data shows how phage genomes, lacking obvious P-stress related genes, have evolved to exploit their host’s environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation

    A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria

    Get PDF
    Marine picocyanobacteria are globally important primary producers, a facet facilitated via their ability to proliferate in nutrient impoverished regions of the sunlit ocean including oligotrophic gyres that are expected to expand due to climate change. Phosphorus is a major macronutrient potentially limiting growth and CO2 fixation capacity in such systems. Here, we identify a unique high-affinity phosphatase which in picocyanobacteria is present only in populations that occupy these P-deplete systems. This phosphatase is abundant and highly expressed in these regions, suggesting that genetic capacity exists within these populations to provide resilience to long-term P depletion. Moreover, this phosphatase is widely distributed in both heterotrophic bacteria and eukaryotic algae hinting that such a trait is broadly utilized to access such environments

    Pili allow dominant marine cyanobacteria to avoid sinking and evade predation

    Get PDF
    How oligotrophic marine cyanobacteria position themselves in the water column is currently unknown. The current paradigm is that these organisms avoid sinking due to their reduced size and passive drift within currents. Here, we show that one in four picocyanobacteria encode a type IV pilus which allows these organisms to increase drag and remain suspended at optimal positions in the water column, as well as evade predation by grazers. The evolution of this sophisticated floatation mechanism in these purely planktonic streamlined microorganisms has important implications for our current understanding of microbial distribution in the oceans and predator–prey interactions which ultimately will need incorporating into future models of marine carbon flux dynamics

    A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution

    Get PDF
    Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1, 2, 3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria[4],[5] that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6, 7, 8, 9, 10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11, 12, 13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.[14] In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family (“Naomiviridae”). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment

    Energy limitation of cyanophage development : implications for marine carbon cycling

    Get PDF
    RJP was in receipt of a Natural Environment Research Council (NERC) PhD studentship and a Warwick University IAS Fellowship. This work was also supported in part by NERC grant NE/N003241/1 and Leverhulme Trust grant RPG-2014-354 to A.D.M., D.J.E., and D.J.S.Marine cyanobacteria are responsible for ~25% of the fixed carbon that enters the ocean biosphere. It is thought that abundant co-occurring viruses play an important role in regulating population dynamics of cyanobacteria and thus the cycling of carbon in the oceans. Despite this, little is known about how viral infections ‘play-out’ in the environment, particularly whether infections are resource or energy limited. Photoautotrophic organisms represent an ideal model to test this since available energy is modulated by the incoming light intensity through photophosphorylation. Therefore, we exploited phototrophy of the environmentally relevant marine cyanobacterium Synechococcus and monitored growth of a cyanobacterial virus (cyanophage). We found that light intensity has a marked effect on cyanophage infection dynamics, but that this is not manifest by a change in DNA synthesis. Instead, cyanophage development appears energy limited for the synthesis of proteins required during late infection. We posit that acquisition of auxiliary metabolic genes (AMGs) involved in light-dependent photosynthetic reactions acts to overcome this limitation. We show that cyanophages actively modulate expression of these AMGs in response to light intensity and provide evidence that such regulation may be facilitated by a novel mechanism involving light-dependent splicing of a group I intron in a photosynthetic AMG. Altogether, our data offers a mechanistic link between diurnal changes in irradiance and observed community level responses in metabolism, i.e., through an irradiance-dependent, viral-induced release of dissolved organic matter (DOM).Publisher PDFPeer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Publisher Correction: SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway (Nature Microbiology, (2022), 7, 8, (1161-1179), 10.1038/s41564-022-01143-7)

    Get PDF
    In the version of this article initially published, the author affiliation information was incomplete, neglecting to note that Brian J. Willett, Joe Grove, Oscar A. MacLean, Craig Wilkie, Giuditta De Lorenzo, Wilhelm Furnon, Diego Cantoni, Sam Scott, Nicola Logan and Shirin Ashraf contributed equally and that John Haughney, David L. Robertson, Massimo Palmarini, Surajit Ray and Emma C. Thomson jointly supervised the work, as now indicated in the HTML and PDF versions of the article
    corecore