1,262 research outputs found

    Analysis by x-ray microtomography of a granular packing undergoing compaction

    Full text link
    Several acquisitions of X-ray microtomography have been performed on a beads packing while it compacts under vertical vibrations. An image analysis allows to study the evolution of the packing structure during its progressive densification. In particular, the volume distribution of the pores reveals a large tail, compatible to an exponential law, which slowly reduces as the system gets more compact. This is quite consistent, for large pores, with the free volume theory. These results are also in very good agreement with those obtained by a previous numerical model of granular compaction.Comment: 4 pages, 4 figures. Latex (revtex4). to be published in Phys. Rev.

    Correlated radio--X-ray variability of Galactic Black Holes: A radio--X-ray flare in Cygnus X-1

    Full text link
    We report on the first detection of a quasi-simultaneous radio-X-ray flare of Cygnus X-1. The detection was made on 2005 April 16 with pointed observations by the Rossi X-ray Timing Explorer and the Ryle telescope, during a phase where the black hole candidate was close to a transition from the its soft into its hard state. The radio flare lagged the X-rays by approximately 7 minutes, peaking at 3:20 hours barycentric time (TDB 2453476.63864). We discuss this lag in the context of models explaining such flaring events as the ejection of electron bubbles emitting synchrotron radiation.Comment: 4 pages, 4 figure

    Improving Binding Specificity of Pharmacological Chaperones That Target Mutant Superoxide Dismutase-1 Linked to Familial Amyotrophic Lateral Sclerosis Using Computational Methods

    Get PDF
    We recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface. A series of chemically unrelated hits were predicted, which were experimentally tested for their ability to block aggregation. At least six of the new molecules exhibited high specificity of binding toward SOD-1 in the presence of blood plasma. These molecules represent a new class of molecules for further development into clinical candidates

    Hypersonic Boundary-Layer Transition for X-33 Phase 2 Vehicle

    Get PDF
    A status review of the experimental and computational work performed to support the X-33 program in the area of hypersonic boundary-layer transition is presented. Global transition fronts are visualized using thermographic phosphor measurements. Results are used to derive transition correlations for "smooth body" and discrete roughness data and a computational tool is developed to predict transition onset for X-33 using these results. The X-33 thermal protection system appears to be conservatively designed for transition effects based on these studies. Additional study is needed to address concerns related to surface waviness. A discussion of future test plans is included

    Microtubule depolymerization by the kinesin-8 motor Kip3p: a mathematical model

    Get PDF
    Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. Here we describe a simple model that incorporates directional motion and destabilization of the MT plus end by kinesin 8. Our model quantitatively reproduces the key features of length-vs-time traces for stabilized MTs in the presence of purified kinesin 8, including length-dependent depolymerization. Comparison of model predictions with experiments suggests that kinesin 8 depolymerizes processively, i.e., one motor can remove multiple tubulin dimers from a stabilized MT. Fluctuations in MT length as a function of time are related to depolymerization processivity. We have also determined the parameter regime in which the rate of MT depolymerization is length dependent: length-dependent depolymerization occurs only when MTs are sufficiently short; this crossover is sensitive to the bulk motor concentration.Comment: 34 pages, 11 figure

    Tumour-infiltrating regulatory T cell density before neoadjuvant chemoradiotherapy for rectal cancer does not predict treatment response

    Get PDF
    Neoadjuvant (preoperative) chemoradiotherapy (CRT) decreases the risk of rectal cancer recurrence and reduces tumour volume prior to surgery. However, response to CRT varies considerably between individuals and factors associated with response are poorly understood. Foxp3+ regulatory T cells (Tregs) inhibit anti-tumour immunity and may limit any response to chemotherapy and radiotherapy. We have previously reported that a low density of Tregs in the tumour stroma following neoadjuvant CRT for rectal cancer is associated with improved tumour regression. Here we have examined the association between Treg density in pre-treatment diagnostic biopsy specimens and treatment response, in this same patient cohort. We aimed to determine whether pre-treatment tumour-infiltrating Treg density predicts subsequent response to neoadjuvant CRT. Foxp3+, CD8+ and CD3+ cell densities in biopsy samples from 106 patients were assessed by standard immunohistochemistry (IHC) and evaluated for their association with tumour regression grade and survival. We found no association between the density of any T cell subset pre-treatment and clinical outcome, indicating that tumour-infiltrating Treg density does not predict response to neoadjuvant CRT in rectal cancer. Taken together with the findings of the previous study, these data suggest that in the context of neoadjuvant CRT for rectal cancer, the impact of chemotherapy and/or radiotherapy on anti-tumour immunity may be more important than the state of the pre-existing local immune response
    corecore