81 research outputs found

    Time-resolved oxygen production by PSII: chasing chemical intermediates

    Get PDF
    AbstractPhotosystem II (PSII) produces dioxygen from water in a four-stepped process, which is driven by four quanta of light and catalysed by a Mn-cluster and tyrosine Z. Oxygen is liberated during one step, coined S3⇒S0. Chemical intermediates on the way from reversibly bound water to dioxygen have not yet been tracked, however, a break in the Arrhenius plot of the oxygen-evolving step has been taken as evidence for its existence.We scrutinised the temperature dependence of (i) UV-absorption transients attributable to the reduction of the Mn-cluster and tyrosine Z by water, and (ii) polarographic transients attributable to the release of dioxygen. Using a centrifugatable and kinetically competent Pt-electrode, we observed no deviation from a linear Arrhenius plot of oxygen release in the temperature range from −2 to 32 °C, and hence no evidence, by this approach, for a sufficiently long-lived chemical intermediate. The half-rise times of oxygen release differed between Synechocystis WT* (at 20 °C: 1.35 ms) and a point mutant (D1–D61N: 13.1 ms), and the activation energies differed between species (Spinacia oleracea, 30 kJ/mol versus Synechocystis, 41 kJ/mol) and preparations (PSII membranes, 41 kJ/mol versus core complexes, 33 kJ/mol, Synechocystis).Correction for polarographic artefacts revealed, for the first time, a temperature-dependent lag-phase of the polarographic transient (duration at 20 °C: 0.45 ms, activation energy: 31 kJ/mol), which was indicative of a short-lived intermediate. It was, however, not apparent in the UV-transients. Thus the “intermediate” was probably newly formed and transiently bound oxygen

    Structural Effects of Ammonia Binding to the Mn_4CaO_5 Cluster of Photosystem II

    Get PDF
    The Mn_4CaO_5 oxygen-evolving complex (OEC) of photosystem II catalyzes the light-driven oxidation of two substrate waters to molecular oxygen. ELDOR-detected NMR along with computational studies indicated that ammonia, a substrate analogue, binds as a terminal ligand to the Mn4A ion trans to the O5 μ_4 oxido bridge. Results from electron spin echo envelope modulation (ESEEM) spectroscopy confirmed this and showed that ammonia hydrogen bonds to the carboxylate side chain of D1-Asp61. Here we further probe the environment of OEC with an emphasis on the proximity of exchangeable protons, comparing ammonia-bound and unbound forms. Our ESEEM and electron nuclear double resonance (ENDOR) results indicate that ammonia substitutes for the W1 terminal water ligand without significantly altering the electronic structure of the OEC

    Participation of Glutamate-354 of the CP43 Polypeptide in the Ligation of Manganese and the Binding of Substrate Water in Photosystem II

    Get PDF
    In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn4Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn4Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild type. In addition, the oxygen flash yields exhibited normal period four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant's lower steady-state rate (approximately 20% compared to wild type). Experiments conducted with H218O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S3 state compared to wild type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S1 state Mn-EXAFS spectrum, a slightly altered S2 state multiline EPR signal, a substantially altered S 2-minus-S1 FTIR difference spectrum, and an unusually long lifetime for the S2 state (>10 h) in a substantial fraction of reaction centers. In contrast, the S2 state Mn-EXAFS spectrum was nearly indistinguishable from that of wild type. The S2-minus-S 1 FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with 15N and specific labeling with l-[1-13C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the α-COO- group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3-4 cm -1 in both the S1 and S2 states. The EPR and FTIR data implied that 76-82% of CP43-E354Q PSII centers can achieve the S 2 state and that most of these can achieve the S3 state, but no evidence for advancement beyond the S3 state was observed in the FTIR data, at least not in a majority of PSII centers. Although the X-ray absorption and EPR data showed that the CP43-E354Q mutation only subtly perturbs the structure and spin state of the Mn4Ca cluster in the S 2 state, the FTIR and H218O exchange data show that the mutation strongly influences other properties of the Mn4Ca cluster, altering the response of numerous carboxylate and amide groups to the increased positive charge that develops on the cluster during the S1 to S2 transition and weakening the binding of both substrate water molecules (or water-derived ligands), especially the one that exchanges rapidly in the S3 state. The FTIR data provide evidence that CP43-Glu354 coordinates to the Mn4Ca cluster in the S1 state as a bridging ligand between two metal ions but provide no compelling evidence that this residue changes its coordination mode during the S1 to S 2 transition. The H218O exchange data provide evidence that CP43-Glu354 interacts with the Mn ion that ligates the substrate water molecule (or water-derived ligand) that is in rapid exchange in the S 3 state

    Structural Effects of Ammonia Binding to the Mn_4CaO_5 Cluster of Photosystem II

    Get PDF
    The Mn_4CaO_5 oxygen-evolving complex (OEC) of photosystem II catalyzes the light-driven oxidation of two substrate waters to molecular oxygen. ELDOR-detected NMR along with computational studies indicated that ammonia, a substrate analogue, binds as a terminal ligand to the Mn4A ion trans to the O5 μ_4 oxido bridge. Results from electron spin echo envelope modulation (ESEEM) spectroscopy confirmed this and showed that ammonia hydrogen bonds to the carboxylate side chain of D1-Asp61. Here we further probe the environment of OEC with an emphasis on the proximity of exchangeable protons, comparing ammonia-bound and unbound forms. Our ESEEM and electron nuclear double resonance (ENDOR) results indicate that ammonia substitutes for the W1 terminal water ligand without significantly altering the electronic structure of the OEC

    Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f

    Get PDF
    Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700–800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the “red limit” for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth

    High-resolution cryo-electron microscopy structure of photosystem II from the mesophilic cyanobacterium, Synechocystis sp. PCC 6803

    Get PDF
    Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a highresolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation

    A Delphi Consensus Study

    Get PDF
    Funding Information: We sincerely thank all the experts who participated in this Delphi study for their time and for sharing their expertise. All Delphi experts qualify for authorship based on the fact that they were involved in data collection and all critically appraised the final manuscript for important intellectual content. See Appendix B for the names of the Delphi experts. Publisher Copyright: © 2021 The AuthorsObjective: No dedicated studies have been performed on the optimal management of patients with an acute stroke related to carotid intervention nor is there a solid recommendation given in the European Society for Vascular Surgery guideline. By implementation of an international expert Delphi panel, this study aimed to obtain expert consensus on the optimal management of in hospital stroke occurring during or following CEA and to provide a practical treatment decision tree. Methods: A four round Delphi consensus study was performed including 31 experts. The aim of the first round was to investigate whether the conceptual model indicating the traditional division between intra- and post-procedural stroke in six phases was appropriate, and to identify relevant clinical responses during these six phases. In rounds 2, 3, and 4, the aim was to obtain consensus on the optimal response to stroke in each predefined setting. Consensus was reached in rounds 1, 3, and 4 when ≥ 70% of experts agreed on the preferred clinical response and in round 2 based on a Likert scale when a median of 7 – 9 (most adequate response) was given, IQR ≤ 2. Results: The experts agreed (> 80%) on the use of the conceptual model. Stroke laterality and type of anaesthesia were included in the treatment algorithm. Consensus was reached in 17 of 21 scenarios (> 80%). Perform diagnostics first for a contralateral stroke in any phase, and for an ipsilateral stroke during cross clamping, or apparent stroke after leaving the operation room. For an ipsilateral stroke during the wake up phase, no formal consensus was achieved, but 65% of the experts would perform diagnostics first. A CT brain combined with a CTA or duplex ultrasound of the carotid arteries should be performed. For an ipsilateral intra-operative stroke after flow restoration, the carotid artery should be re-explored immediately (75%). Conclusion: In patients having a stroke following carotid endarterectomy, expedited diagnostics should be performed initially in most phases. In patients who experience an ipsilateral intra-operative stroke following carotid clamp release, immediate re-exploration of the index carotid artery is recommended.publishersversionpublishe

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Progress in hybrid plasma wakefield acceleration

    Get PDF
    Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact

    A difusão da doutrina da circulação do sangue: a correspondência entre William Harvey e Caspar Hofmann em maio de 1636

    Full text link
    corecore