3,006 research outputs found
Building Sustainable Success in Art Galleries: An Exploratory Study of Adaptive Strategies
Historically, art galleries have operated in a cottage industry that placed a premium on building unique relations with artists and clients. Recent economic and technological trends threaten the viability of this model. Art galleries now face a very challenging environment, demanding careful attention to strategy formulation and execution. However, more questions than answers can be found in the literature about management practices, art gallery performance, and factors affecting gallery success. This paper reports findings on these issues from an exploratory survey of Colorado art galleries. Results suggest that art gallery owners and mangers are not overly concerned about external pressures influencing their organizations. This attitude could adversely affect efforts to build sustainable success and value through adaptive strategies
Impact of polymorphic variants on the molecular pharmacology of the two-agonist conformations of the human β1-adrenoceptor
β-blockers are widely used to improve symptoms and prolong life in heart disease primarily by inhibiting the actions of endogenous catecholamines at the β1-adrenoceptor. There are two common naturally occurring polymorphisms within the human β1-adrenoceptor sequence: Ser or Gly at position 49 in the N-terminus and Gly or Arg at position 389 in the C-terminus and some clinical studies have suggested that expression of certain variants may be associated with disease and affect response to treatment with β-blockers. The β1-adrenoceptor also exists in two agonist conformations - a high affinity catecholamine conformation and a low affinity secondary agonist conformation. Receptor-effector coupling and intracellular signalling from the different conformations may be affected by the polymorphic variants.
Here, we examine in detail the molecular pharmacology of the β1-adrenoceptor polymorphic variants with respect to ligand affinity, efficacy, activation of the different agonist conformations and signal transduction and determine whether the polymorphic variants do indeed affect this secondary conformation. Stable cell lines expressing the wildtype and polymorphic variants were constructed and receptor pharmacology examined using whole cell binding and intracellular secondary messenger techniques.
There was no difference in affinity for agonists and antagonists at the human wildtype β1-adrenoceptor (Ser49/Gly389) and the polymorphic variants Gly49/Gly389 and Ser49/Arg389. Furthermore, the polymorphic variant receptors both have two active agonist conformations with pharmacological properties similar to the wildtype receptor. Although the polymorphism at position 389 is thought to occur in an intracellular domain important for Gs-coupling, the two agonist conformations of the polymorphic variants stimulate intracellular signalling pathways, including Gs-cAMP intracellular signalling, in a manner very similar to that of the wildtype receptor
Transformation of an Agulhas eddy near the continental slope
The transformation of Agulhas eddies near the
continental slope of southern Africa and their subsequent
self-propagation are analyzed in both observational data and
numerical simulations. Self-propagation results from a net
dipole moment of a generalized heton structure consisting
of a surface-intensified anticyclonic eddy and deep cyclonic
pattern. Such Agulhas vortical structures can form near the
retroflection region and further north along the western coast
of southern Africa. We analyze nonlinear topographic wave
generation, vortex deformations, and filament production as
an important part in water mass exchange. Self-propagating
structures provide a conduit for exchange between the deeNational Science Foundation (U.S.) (Grant OCE-0752346
Stochastic Real-time Optimal Control for Bearing-only Trajectory Planning
A method is presented to simultaneously solve the optimal control problem and the optimal estimation problem for a bearing-only sensor. For bearing-only systems that require a minimum level of certainty in position relative to a source for mission accomplishment, some amount of maneuver is required to measure range. Traditional methods of trajectory optimization and optimal estimation minimize an information metric. This paper proposes constraining the final value of the information states with known time propagation dynamics relative to a given trajectory which allows for attainment of the required level of information with minimal deviation from a general performance index that can be tailored to a specific vehicle. The proposed method does not suffer from compression of the information metric into a scalar, and provides a route that will attain a particular target estimate quality while maneuvering to a desired relative point or set. An algorithm is created to apply the method in real-time, iteratively estimating target position with an Unscented Kalman Filter and updating the trajectory with an efficient pseudospectral method. Methods and tools required for hardware implementation are presented that apply to any real-time optimal control (RTOC) system. The algorithm is validated with both simulation and flight test, autonomously landing a quadrotor on a wire
A Farmdalian Pollen Diagram From East-Central Iowa
Pollen analysis of the Butler Farm buried peat in east-central Iowa suggests that a spruce-pine forest grew in the area during the Farmdalian Substage. Pine decreased and spruce increased in dominance as the peat accumulated. Radiocarbon dates indicate that the peat was deposited from 28,800 to 22,750 RCYBP. It is overlain by late Wisconsinan loess and underlain by a Sangamon paleosol developed on Illinoian till. The regional pollen data suggest a general cooling trend through Farmdale time
Topical antibiotic treatment of infected dental pulps of monkeys
Indiana University-Purdue University Indianapolis (IUPUI)A modified double-blind method of investigation was used in which the pulps of 52 monkey teeth were surgically
exposed and left open to the oral environment for a period of 24 hours.
One-half of the exposed pulps were treated with an antibiotic preparation and one-half with a pure starch control. The antibiotic compound consisted of erythromycin estolate 10 percent, streptomycin sulfate 10 percent, and
starch q. s. as the vehicle. The teeth were extracted at 30 and 90 day intervals
after treatment and histologically evaluated. Inflammation of a varying degree was observed in all of the teeth treated with either the antibiotic preparation or the starch control.
However, those teeth treated with the antibiotic capping material exhibited much less inflammation than did the
great majority of teeth treated with the starch control, in which abscess formation and necrosis were frequently
observed. The pulps of those teeth treated with the antibiotic capping material demonstrated a decidedly more
favorable reaction than did those pulps treated with the starch capping material.
Calcific repair at the exposure site was not observed to be complete in any instance. The histologic findings for the antibiotic treated teeth were encouraging and warrant additional investigations of longer duration
Seismic reflections from depths of less than two meters
This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".Three distinct seismic reflections were obtained from within the upper 2.1 m of flood-plain alluvium in the Arkansas River valley near Great Bend, Kansas. Reflections were observed at depths of 0.63, 1.46, and 2.10 m and confirmed by finite-difference wave-equation modeling. The wavefield was densely sampled by placing geophones at 5-cm intervals, and near-source nonelastic deformation was minimized by using a very small seismic impulse source. For the reflections to be visible within this shallow range, low seismic P-wave velocities (<300 m/s) and high dominant-frequency content of the data (∼450 Hz) were essential. The practical implementation of high-resolution seismic imaging at these depths has the potential to complement ground-penetrating radar (GPR), chiefly in areas where materials exhibiting high electrical conductivity, such as clays, prevent the effective use of GPR. Potential applications of these results exist in hydrogeology and environmental, Quaternary, and neotectonic geology
High predictability of direct competition between marine diatoms under different temperatures and nutrient states
The distribution of marine phytoplankton will shift alongside changes in marine environments, leading to altered species frequencies and community composition. An understanding of the response of mixed populations to abiotic changes is required to adequately predict how environmental change may affect the future composition of phytoplankton communities. This study investigated the growth and competitive ability of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana , along a temperature gradient (9–35°C) spanning the thermal niches of both species under both high‐nitrogen nutrient‐replete and low‐nitrogen nutrient‐limited conditions. Across this temperature gradient, the competitive outcome under both nutrient conditions at any assay temperature, and the critical temperature at which competitive advantage shifted from one species to the other, was well predicted by the temperature dependencies of the growth rates of the two species measured in monocultures. The temperature at which the competitive advantage switched from P. tricornutum to T. pseudonana increased from 18.8°C under replete conditions to 25.3°C under nutrient‐limited conditions. Thus, P. tricornutum was a better competitor over a wider temperature range in a low N environment. Being able to determine the competitive outcomes from physiological responses of single species to environmental changes has the potential to significantly improve the predictive power of phytoplankton spatial distribution and community composition models
Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Anthony, R. E., Chaput, J., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf. Journal of Glaciology, 65(254), (2019): 912-925, doi:10.1017/jog.2019.64.The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151 and 1246416. JC was additionally supported by Yates funds in the Colorado State University Department of Mathematics. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107. We thank Reinhard Flick and Patrick Shore for their support during field work, Tom Bolmer in locating stations and preparing maps, and the US Antarctic Program for logistical support. The seismic instruments were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data collected are available through the IRIS Data Management Center under RIS and DRIS network code XH. The PSD-PDFs presented in this study were processed with the IRIS Noise Tool Kit (Bahavar and others, 2013). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1261681 and the DOE National Nuclear Security Administration. The authors appreciate the support of the University of Wisconsin-Madison Automatic Weather Station Program for the data set, data display and information; funded under NSF grant number ANT-1543305. The Ross Ice Shelf profiles were generated using the Antarctic Mapping Tools (Greene and others, 2017). Regional maps were generated with the Generic Mapping Tools (Wessel and Smith, 1998). Topography and bathymetry data for all maps in this study were sourced from the National Geophysical Data Center ETOPO1 Global Relief Model (doi:10.7289/V5C8276M). We thank two anonymous reviewers for suggestions on the scope and organization of this paper
- …