280 research outputs found

    Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia

    Get PDF
    Estrogen modifies human emotion and cognition and impacts symptoms of schizophrenia. We hypothesized that the variation in the estrogen receptor alpha (ESR1) gene and cortical ESR1 mRNA is associated with schizophrenia. In a small case–control genetic association analysis of postmortem brain tissue, genotype CC (rs2234693) and haplotypes containing the C allele of a single-nucleotide polymorphism (SNP) in intron1 (PvuII) were more frequent in African American schizophrenics (P = 0.01–0.001). In a follow-up family-based association analysis, we found overtransmission of PvuII allele C and a PvuII C-containing haplotype (P = 0.01–0.03) to African American and Caucasian patients with schizophrenia. Schizophrenics with the ‘at risk’ PvuII genotype had lower ESR1 mRNA levels in the frontal cortex. Eighteen ESR1 splice variants and decreased frequencies of the wild-type ESR1 mRNA were detected in schizophrenia. In one patient, a unique ESR1 transcript with a genomic insert encoding a premature stop codon and a truncated ESR1 protein lacking most of the estrogen binding domain was the only transcript detected. Using a luciferase assay, we found that mRNA encoding a truncated ESR1 significantly attenuates gene expression at estrogen-response elements demonstrating a dominant negative function. An intron 6 SNP [rs2273207(G)] was associated with an ESR1 splice variant missing exon seven. The T allele of another intron 6 SNP was part of a 3′ haplotype less common in schizophrenia [rs2273206(T), rs2273207(G), rs2228480(G)]. Thus, the variation in the ESR1 gene is associated with schizophrenia and the mechanism of this association may involve alternative gene regulation and transcript processing

    From Tetraquark to Hexaquark: A Systematic Study of Heavy Exotics in the Large NcN_c Limit

    Get PDF
    A systematic study of multiquark exotics with one or Nc1N_c-1 heavy quarks in the large NcN_c limit is presented. By binding a chiral soliton to a heavy meson, either a normal NcN_c-quark baryon or an exotic (Nc+2)(N_c+2)-quark baryon is obtained. By replacing the heavy quark with Nc1N_c-1 heavy antiquarks, exotic (2Nc2)(2N_c-2)-quark and 2Nc2N_c-quark mesons are obtained. When Nc=3N_c = 3, they are just the normal triquark baryon QqqQqq, the exotic pentaquark baryon QqˉqˉqˉqˉQ\bar q\bar q\bar q\bar q, tetraquark di-meson QˉQˉqq\bar Q \bar Q qq and the hexaquark di-baryon QˉQˉqˉqˉ barqqˉ\bar Q \bar Q \bar q \bar q\ bar q \bar q respectively. Their stabilities and decays are also discussed. In particular, it is shown that the ``heavy to heavy'' semileptonic decays are described by the Isgur--Wise form factors of the normal baryons.Comment: 14 pages in REVTeX, no Figure

    Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry

    Get PDF
    Although mutations may represent attractive targets for immunotherapy, direct identification of mutated peptide ligands isolated from human leucocyte antigens (HLA) on the surface of native tumour tissue has so far not been successful. Using advanced mass spectrometry (MS) analysis, we survey the melanoma-associated immunopeptidome to a depth of 95,500 patient-presented peptides. We thereby discover a large spectrum of attractive target antigen candidates including cancer testis antigens and phosphopeptides. Most importantly, we identify peptide ligands presented on native tumour tissue samples harbouring somatic mutations. Four of eleven mutated ligands prove to be immunogenic by neoantigen-specific T-cell responses. Moreover, tumour-reactive T cells with specificity for selected neoantigens identified by MS are detected in the patient's tumour and peripheral blood. We conclude that direct identification of mutated peptide ligands from primary tumour material by MS is possible and yields true neoepitopes with high relevance for immunotherapeutic strategies in cancer

    The Moving Junction Protein RON8 Facilitates Firm Attachment and Host Cell Invasion in Toxoplasma gondii

    Get PDF
    The apicomplexan moving junction (MJ) is a highly conserved structure formed during host cell entry that anchors the invading parasite to the host cell and serves as a molecular sieve of host membrane proteins that protects the parasitophorous vacuole from host lysosomal destruction. While recent work in Toxoplasma and Plasmodium has reinforced the composition of the MJ as an important association of rhoptry neck proteins (RONs) with micronemal AMA1, little is known of the precise role of RONs in the junction or how they are targeted to the neck subcompartment. We report the first functional analysis of a MJ/RON protein by disrupting RON8 in T. gondii. Parasites lacking RON8 are severely impaired in both attachment and invasion, indicating that RON8 enables the parasite to establish a firm clasp on the host cell and commit to invasion. The remaining junction components frequently drag in trails behind invading knockout parasites and illustrate a malformed complex without RON8. Complementation of Δron8 parasites restores invasion and reveals a processing event at the RON8 C-terminus. Replacement of an N-terminal region of RON8 with a mCherry reporter separates regions within RON8 that are necessary for rhoptry targeting and complex formation from those required for function during invasion. Finally, the invasion defects in Δron8 parasites seen in vitro translate to radically impaired virulence in infected mice, promoting a model in which RON8 has a crucial and unprecedented task in committing Toxoplasma to host cell entry

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND).

    Get PDF
    INTRODUCTION: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION: The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    corecore