419 research outputs found

    Distributed image reconstruction for very large arrays in radio astronomy

    Get PDF
    Current and future radio interferometric arrays such as LOFAR and SKA are characterized by a paradox. Their large number of receptors (up to millions) allow theoretically unprecedented high imaging resolution. In the same time, the ultra massive amounts of samples makes the data transfer and computational loads (correlation and calibration) order of magnitudes too high to allow any currently existing image reconstruction algorithm to achieve, or even approach, the theoretical resolution. We investigate here decentralized and distributed image reconstruction strategies which select, transfer and process only a fraction of the total data. The loss in MSE incurred by the proposed approach is evaluated theoretically and numerically on simple test cases.Comment: Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th, Jun 2014, Coruna, Spain. 201

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc

    Distributed Deblurring of Large Images of Wide Field-Of-View

    Full text link
    Image deblurring is an economic way to reduce certain degradations (blur and noise) in acquired images. Thus, it has become essential tool in high resolution imaging in many applications, e.g., astronomy, microscopy or computational photography. In applications such as astronomy and satellite imaging, the size of acquired images can be extremely large (up to gigapixels) covering wide field-of-view suffering from shift-variant blur. Most of the existing image deblurring techniques are designed and implemented to work efficiently on centralized computing system having multiple processors and a shared memory. Thus, the largest image that can be handle is limited by the size of the physical memory available on the system. In this paper, we propose a distributed nonblind image deblurring algorithm in which several connected processing nodes (with reasonable computational resources) process simultaneously different portions of a large image while maintaining certain coherency among them to finally obtain a single crisp image. Unlike the existing centralized techniques, image deblurring in distributed fashion raises several issues. To tackle these issues, we consider certain approximations that trade-offs between the quality of deblurred image and the computational resources required to achieve it. The experimental results show that our algorithm produces the similar quality of images as the existing centralized techniques while allowing distribution, and thus being cost effective for extremely large images.Comment: 16 pages, 10 figures, submitted to IEEE Trans. on Image Processin

    Exploring new features for music classification

    Get PDF
    International audienceAutomatic music classification aims at grouping unknown songs in predefined categories such as music genre or induced emotion. To obtain perceptually relevant results, it is needed to design appropriate features that carry important information for semantic inference. In this paper, we explore novel features and evaluate them in a task of music automatic tagging. The proposed features span various aspects of the music: timbre, textual metadata, visual descriptors of cover art, and features characterizing the lyrics of sung music. The merit of these novel features is then evaluated using a classification system based on a boosting algorithm on binary decision trees. Their effectiveness for the task at hand is discussed with reference to the very common Mel Frequency Cepstral Coefficients features. We show that some of these features alone bring useful information, and that the classification system takes great advantage of a description covering such diverse aspects of songs

    Rhythm extraction from polyphonic symbolic music

    Get PDF
    International audienceWe focus on the rhythmic component of symbolic music similarity, proposing several ways to extract a monophonic rhythmic signature from a symbolic poly- phonic score. To go beyond the simple extraction of all time intervals between onsets (noteson extraction), we select notes according to their length (short and long extractions) or their intensities (intensity+/− extractions). Once the rhythm is extracted, we use dynamic programming to compare several sequences. We report results of analysis on the size of rhythm patterns that are specific to a unique piece, as well as experiments on similarity queries (ragtime music and Bach chorale variations). These results show that long and intensity+ extractions are often good choices for rhythm extraction. Our conclusions are that, even from polyphonic symbolic music, rhythm alone can be enough to identify a piece or to perform pertinent music similarity queries, especially when using wise rhythm extractions

    Inclusion through Sport: A Critical View on Paralympic Legacy from a Historical Perspective

    Get PDF
    Through its commitment to universalism, the inclusion of disabled people has become an increasingly prominent objective of the Paralympic Games. To achieve this, the organisers rely on the notion of legacy, which refers to the expected effects of major sporting events on host countries. This notion was initially founded on material aspects and then took an interest in certain intangible sides that were spotted within the organiser’s goals and studied in literature. Building on the historical literature about the Paralympic movement’s institutionalization, this article shows that this institutionalization took place in a context of tension between disabled communities, depending on their proximity to the Olympic model. What is the impact of this historical legacy in terms of inclusion of the greater number? By shedding light on the historical perspective of the obstacles encountered in the creation of an ‘all-disabilities’ sporting event, this article aims to discuss and challenge the current perspective on the inclusive legacy of the Paralympic Games

    CLIMATE RISK AND FOOD SECURITY IN MALI

    Get PDF
    We combine socioeconomic data from a large‐scale household survey with historical climate data to map the climate sensitivity of availability and access dimensions of food security in Mali, and infer the ways in which at‐risk communities may have been impacted by persistent climatic shift. Thirty years after 1982–1984, the period of most intense drought during the protracted late 20th century drying of the Sahel, the impact of drought on livelihoods and food security is still recognizable in the Sahelian center of Mali. This impact is expressed in the larger fraction of households in this Sahelian center of the country—the agro‐ecological transition between pastoralism in the north, and sedentary agriculture in the south—who practice agriculture but not livestock raising, despite environmental conditions that are suitable to their combination. These households have lower food security and rely more frequently on detrimental nutrition‐based coping strategies, such as reducing the quantity or quality of meals. In contrast, the more food secure households show a clear tendency toward livelihood diversification away from subsistence agriculture. These households produce less of what they consume, yet spend less on food in proportion. The analysis points to the value of interdisciplinary research—in this case bridging climate science and vulnerability analysis—to gain a dynamical understanding of complex systems, understanding which may be exploited to address real‐world challenges, offering lessons about food security and local adaptation strategies in places among the most vulnerable to climate

    Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver

    Get PDF
    Aberrant DNA methylation is a common feature of neoplastic lesions, and early detection of such changes may provide powerful mechanistic insights and biomarkers for carcinogenesis. Here, we investigate dynamic changes in the mouse liver DNA methylome associated with short (1 day) and prolonged (7, 28 and 91 days) exposure to the rodent liver non-genotoxic carcinogen, phenobarbital (PB). We find that the distribution of 5mC/5hmC is highly consistent between untreated individuals of a similar age; yet, changes during liver maturation in a transcriptionally dependent manner. Following drug treatment, we identify and validate a series of differentially methylated or hydroxymethylated regions: exposure results in staged transcriptional responses with distinct kinetic profiles that strongly correlate with promoter proximal region 5hmC levels. Furthermore, reciprocal changes for both 5mC and 5hmC in response to PB suggest that active demethylation may be taking place at each set of these loci via a 5hmC intermediate. Finally, we identify potential early biomarkers for non-genotoxic carcinogenesis, including several genes aberrantly expressed in liver cancer. Our work suggests that 5hmC profiling can be used as an indicator of cell states during organ maturation and drug-induced responses and provides novel epigenetic signatures for non-genotoxic carcinogen exposur

    Automatic laser alignment for multifocal microscopy using a LCOS-SLM and a 32x32 pixel CMOS SPAD array

    Get PDF
    International audienceAlignment of a laser to a point source detector for confocal microscopy can be a time-consuming task. The problem is further exacerbated when multiple laser excitation spots are used in conjunction with a multiple pixel single photon detector; in addition to X, Y and Z positioning, pixels in a 2D array detector can also be misaligned in roll, pitch and yaw with respect to each other, causing magnification, rotation and focus variation across the array. We present a technique for automated multiple point laser alignment to overcome these issues using closed-loop feedback between a laser illuminated computer controlled Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM) acting as the excitation source and a 32 32 pixel CMOS Single Photon Avalanche Diode (SPAD) array as the multiple pixel detection element. The alignment procedure is discussed and simulated to prove its feasibility before being implemented and tested in a practical optical system. We show that it is possible to align each independent laser point in a sub-second time scale, significantly simplifying and speeding up experimental set-up times. The approach provides a solution to the difficulties associated with multiple point confocal laser alignment to multiple point detector arrays, paving the way for further advances in applications such as Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Lifetime Imaging Microscopy (FLIM)

    Etre paralysé, devenir "pilote". Etude des processus d’incorporation des technologies

    Get PDF
    La modification de l'humain par son activité technicienne suscite à la fois craintes et espoirs. Elle déstabilise certains repères anthropologiques profonds comme la frontière entre le soi et le non-soi. Depuis quelques années, les innovations techniques et technologiques sont donc l'objet de nombreuses réflexions. Derrière la diversité des registres de discours, on repère le constat homogène d'une perte de contrôle. En effet, la technologie, en permettant d'agir sans connaitre les ressorts de l'action, fonctionne par essence sur l'impensé. Cet ouvrage analyse la technologie non pas comme un support ou un médium mais comme un rapport particulier à l'action : expérimental et instrumental
    corecore