1,873 research outputs found

    Acoustic measurements of boundary layer flux profiles over a sandy rippled bed under regular waves

    Get PDF
    The study of boundary layer sediment transport processes requires contemporaneous measurements of the bedforms, the flow and the sediment movement. Obtaining these three parameters, at the required temporal-spatial resolutions, has been traditionally difficult, especially within a few centimetres of the bed. To circumvent some of the deployment of an acoustic backscatter system, ABS, an acoustic ripple profiler, ARP, and an acoustic Doppler velocity profiler, ADVP, to measure sediment entrainment processes above a rippled bed under regular waves. High resolution acoustic observations of the suspend sediment concentration, flow and bedforms have been collected. Here we report on some of the initial results obtained from this study

    Membrane Reactor Based on Hybrid Nanomaterials for Process Intensification of Catalytic Hydrogenation Reaction: an Example of Reduction of the Environmental Footprint of Chemical Synthesis from a Batch to a Continuous Flow Chemistry Process

    Get PDF
    Membrane processes represent a well matured technology for water treatment with low environmental footprints compared to other type of processes. We have now combined this technology with nanomaterials, ionic liquids (negligible vapor pressure), and poly(ionic liquids) in order to enlarge the field of applications while benefiting from the advantages of membranes. We have modified flat sheet water filtration membrane and used it as both catalytic support and reactor with the advantages to make the reaction and the separation of products in only one step. For this purpose, catalytic metallic nanoparticles of palladium (diameter of ca. 2 nm) were synthesized in a gel-poly(ionic liquid) layer grafted at the surface of polymeric filtration membranes by UV-photografting method. The so obtained catalytic membrane was successfully applied in the hydrogenation of trans-4-phenyl-3-buten-2-one in forced flow-through configuration, which gave full conversion in a few seconds (2.6 s) showing advantages over the batch reactor process (in that case, palladium nanoparticles were synthesized in the ionic liquid [MMPIM][NTf2] (1,2-dimethyl-3-propylimidazolium bis-(trifluoromethylsulfonyl)imide)). Nevertheless, the catalytic membrane used in submerged mode no more prevailed over the batch reactor. Catalytic nanoparticles remain highly active in the membrane after 12 cycles of reaction without need of recuperation. Results were compared to one obtains with a similar system in batch reactor conditions, showing high efficiency of our process in term of selectivity and reactivity, combined to an important compactness, the productivity of the catalytic hollow fiber membrane reactor and permitting to operate at larger scale with promising results in an environmental friendly way in term of energy and product (metal, solvent) consuming

    High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction

    Get PDF
    The elaboration of a polymeric catalytic membrane containing palladium nanoparticles is presented. The membrane was prepared using a photo-grafting process with imidazolium-based ionic liquid monomers as modifying agent and microPES® as support membrane. Ionic liquid serves as a stabilizer and immobilizer for the catalytic species, i.e. palladium nanoparticles. The Suzuki–Miyaura cross-coupling reaction was carried out on the catalytic membrane in flow-through configuration. Complete conversion was achieved in 10 s through one single filtration, without formation of byproducts. The apparent reaction rate constant was three orders of magnitude greater than in a batch reactor. No catalyst leaching was detected. This membrane offers the possibility of continuous production with no need for a separation step of the catalyst from the reaction medium

    The Canada-UK Deep Submillimetre Survey: First Submillimetre Images, the Source Counts, and Resolution of the Background

    Get PDF
    We present the first results of a deep unbiased submillimetre survey carried out at 450 and 850 microns. We detected 12 sources at 850 microns, giving a surface density of sources with 850-micron flux densities > 2.8mJy of of 0.49+-0.16 per square arcmin. The sources constitute 20-30% of the background radiation at 850 microns and thus a significant fraction of the entire background radiation produced by stars. This implies, through the connection between metallicity and background radiation, that a significant fraction of all the stars that have ever been formed were formed in objects like those detected here. The combination of their large contribution to the background radiation and their extreme bolometric luminosities make these objects excellent candidates for being proto-ellipticals. Optical astronomers have recently shown that the UV-luminosity density of the universe increases by a factor of about 10 between z=0 and z=1 and then decreases again at higher redshifts. Using the results of a parallel submillimetre survey of the local universe, we show that both the submillimetre source density and background can be explained if the submillimetre luminosity density evolves in a similar way to the UV-luminosity density. Thus, if these sources are ellipticals in the process of formation, they may be forming at relatively modest redshifts.Comment: 8 pages (LATEX), 6 postscript figures, submitted to ApJ Letter

    Evaluating the potential of whole-genome sequencing for tracing transmission routes in experimental infections and natural outbreaks of bovine respiratory syncytial virus

    Get PDF
    Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle. Genomic sequencing can resolve phylogenetic relationships between virus populations, which can be used to infer transmission routes and potentially inform the design of biosecurity measures. Sequencing of short

    Food web uncertainties influence predictions of climate change effects on soil carbon sequestration in heathlands

    Get PDF
    Carbon cycling models consider soil carbon sequestration a key process for climate change mitigation. However, these models mostly focus on abiotic soil processes and, despite its recognized critical mechanistic role, do not explicitly include interacting soil organisms. Here, we use a literature study to show that even a relatively simple soil community (heathland soils) contains large uncertainties in temporal and spatial food web structure. Next, we used a Lotka–Volterra-based food web model to demonstrate that, due to these uncertainties, climate change can either increase or decrease soil carbon sequestration to varying extents. Both the strength and direction of changes strongly depend on (1) the main consumer’s (enchytraeid worms) feeding preferences and (2) whether decomposers (fungi) or enchytraeid worms are more sensitive to stress. Hence, even for a soil community with a few dominant functional groups and a simulation model with a few parameters, filling these knowledge gaps is a critical first step towards the explicit integration of soil food web dynamics into carbon cycling models in order to better assess the role soils play in climate change mitigation

    Islands of linkage in an ocean of pervasive recombination reveals two-speed evolution of human cytomegalovirus genomes

    Get PDF
    Human cytomegalovirus (HCMV) infects most of the population worldwide, persisting throughout the host's life in a latent state with periodic episodes of reactivation. While typically asymptomatic, HCMV can cause fatal disease among congenitally infected infants and immunocompromised patients. These clinical issues are compounded by the emergence of antiviral resistance and the absence of an effective vaccine, the development of which is likely complicated by the numerous immune evasins encoded by HCMV to counter the host's adaptive immune responses, a feature that facilitates frequent super-infections. Understanding the evolutionary dynamics of HCMV is essential for the development of effective new drugs and vaccines. By comparing viral genomes from uncultivated or low-passaged clinical samples of diverse origins, we observe evidence of frequent homologous recombination events, both recent and ancient, and no structure of HCMV genetic diversity at the whole-genome scale. Analysis of individual gene-scale loci reveals a striking dichotomy: while most of the genome is highly conserved, recombines essentially freely and has evolved under purifying selection, 21 genes display extreme diversity, structured into distinct genotypes that do not recombine with each other. Most of these hyper-variable genes encode glycoproteins involved in cell entry or escape of host immunity. Evidence that half of them have diverged through episodes of intense positive selection suggests that rapid evolution of hyper-variable loci is likely driven by interactions with host immunity. It appears that this process is enabled by recombination unlinking hyper-variable loci from strongly constrained neighboring sites. It is conceivable that viral mechanisms facilitating super-infection have evolved to promote recombination between diverged genotypes, allowing the virus to continuously diversify at key loci to escape immune detection, while maintaining a genome optimally adapted to its asymptomatic infectious lifecycle

    Gridmapping the northern plains of Mars: Geomorphological, Radar and Water-Equivalent Hydrogen results from Arcadia Plantia

    Get PDF
    A project of mapping ice-related landforms was undertaken to understand the role of sub-surface ice in the northern plains. This work is the first continuous regional mapping from CTX (“ConTeXt Camera”, 6 m/pixel; Malin et al., 2007) imagery in Arcadia Planitia along a strip 300 km across stretching from 30°N to 80°N centred on the 170° West line of longitude. The distribution and morphotypes of these landforms were used to understand the permafrost cryolithology. The mantled and textured signatures occur almost ubiquitously between 35° N and 78° N and have a positive spatial correlation with inferred ice stability based on thermal modelling, neutron spectroscopy and radar data. The degradational features into the LDM (Latitude Dependent Mantle) include pits, scallops and 100 m polygons and provide supporting evidence for sub-surface ice and volatile loss between 35-70° N in Arcadia with the mantle between 70-78° N appearing much more intact. Pitted terrain appears to be much more pervasive in Arcadia than in Acidalia and Utopia suggesting that the Arcadia study area had more wide-spread near-surface sub-surface ice, and thus was more susceptible to pitting, or that the ice was less well-buried by sediments. Correlations with ice stability models suggest that lack of pits north of 65-70° N could indicate a relatively young age (~1Ma), however this could also be explained through regional variations in degradation rates. The deposition of the LDM is consistent with an airfall hypothesis however there appears to be substantial evidence for fluvial processes in southern Arcadia with older, underlying processes being equally dominant with the LDM and degradation thereof in shaping the landscape

    Implications of the 750 GeV gamma-gamma Resonance as a Case Study for the International Linear Collider

    Full text link
    If the gamma-gamma resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program---precision measurements of the Higgs boson, the top quark, and 4-fermion interactions---will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in gamma-gamma and e+e- collisions to directly produce and study the 750 GeV particle from these unique initial states.Comment: 39 pages, 5 figures, 5 tables; v2: some references adde
    • …
    corecore