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Membrane processes represent a well matured technology for water treatment with low environmental 

footprints compared to other type of processes. We have now combined this technology with nanomaterials, 

ionic liquids (negligible vapor pressure), and poly(ionic liquids) in order to enlarge the field of applications 

while benefiting from the advantages of membranes. We have modified flat sheet water filtration membrane 

and used it as both catalytic support and reactor with the advantages to make the reaction and the separation 

of products in only one step. 

For this purpose, catalytic metallic nanoparticles of palladium (diameter of ca. 2 nm) were synthesized in a 

gel-poly(ionic liquid) layer grafted at the surface of polymeric filtration membranes by UV-photografting 

method. The so obtained catalytic membrane was successfully applied in the hydrogenation of trans-4-phenyl-

3-buten-2-one in forced flow-through configuration, which gave full conversion in a few seconds (2.6 s) 

showing advantages over the batch reactor process (in that case, palladium nanoparticles were synthesized in 

the ionic liquid [MMPIM][NTf2] (1,2-dimethyl-3-propylimidazolium bis-(trifluoromethylsulfonyl)imide)). 

Nevertheless, the catalytic membrane used in submerged mode no more prevailed over the batch reactor. 

Catalytic nanoparticles remain highly active in the membrane after 12 cycles of reaction without need of 

recuperation. Results were compared to one obtains with a similar system in batch reactor conditions, 

showing high efficiency of our process in term of selectivity and reactivity, combined to an important 

compactness, the productivity of the catalytic hollow fiber membrane reactor and permitting to operate at 

larger scale with promising results in an environmental friendly way in term of energy and product (metal, 

solvent) consuming.   

1. Introduction 

Palladium nanoparticles (PdNPs) represent a versatile catalyst with a wide range of applications such as C-C 

bond and carbon-heteroatom bond formation, hydrogenation (Tsuji et al. 2004; Astruc et al. 2005; Favier et al. 

2011) and carbonylation processes (Barnard et al. 2008; Gadge et al. 2014). In order to keep the chemical 

and physical properties of PdNPs, the formation of aggregates must be avoided during the catalytic process 

by stabilization of PdNPs. Despite the high intrinsic activity of such catalytic system, the production is 

generally limited by the process when phenomena as diffusional limitation or deactivation of the catalyst 

decrease the apparent reactivity. Another issue is the necessary separation step to recycle the PdNPs. In this 

work, we explored how catalytic membrane reactors can be used to intensify a catalytic process from batch 

conditions to continuous flow production. Those membranes are appropriate to be applied in catalysis due to 
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relevant advantages such as the catalyst immobilization and the intensification of the contact between 

reactants and catalyst (Miachon et al. 2004; Macanas et al. 2010). Most reported catalytic membranes are 

based on inorganic materials due to their high resistance (Julbe et al. 2001). However they cannot reach the 

high packing density offered by polymeric membranes like in the case of hollow fiber membranes assembled 

in modules, reaching up to 10,000 m
2 

of filtration area in 1 m
3
 of reactor at low cost. 

In this work, PdNPs were prepared in neat room temperature ionic liquids (RTIL), taking advantage of the 

efficient dispersion of MNPs in this medium (Venkatesan et al. 2011). Understanding of the different catalytic 

behavior between the PdNPs dispersed in a RTIL and those supported on a polymeric membrane (catalytic 

membrane) could be gained.  

The preparation of the catalytic membrane was realized through an intermatrix synthesis methodology (Gu et 

al. 2015). PdNPs dispersed in a RTIL were prepared by a ‘bottom-up’ methodology (Biswas et al. 2012), using 

palladium acetate as metallic precursor and PVP (polyvinylpyrrolidone) as stabilizer under thermal 

decomposition conditions. Parameters (such as temperature, Pd/PVP ratio, dihydrogen pressure) were 

optimized in order to obtain the most active catalytic system. Those catalytic systems both tested in 

hydrogenations in order to compare the catalytic activity difference between the PdNPs in RTIL and 

membrane supported PdNPs (catalytic membrane).  

 

2. Materials and methods 

2.1 Products and materials 

[MMPIM][NTf2] (1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide) was purchased from 

Solvionic, France and MicroPES (2F) Flat-sheet membrane from Membrana Gmbh (Germany), both directly 

used without pre-treatment. Amicon stirred ultrafiltration cell was purchased from EMD Millipore. The Ismatec 

SA-Reglo Analog peristaltic pump was purchased from IDEX Health & Science. Synthesis of the grafted 

polyRTIL membrane was published in a previous article (Gu et al. 2015). 

 

2.2 Synthesis of colloidal palladium nanoparticles in ionic liquid 

11.5 mg (0.05 mmol) of palladium acetate together with (or without) the corresponding quantity of PVP 

(PolyVinylPyrrolidone) were added in 5 mL of [MMPIM][NTf2] and stirred at room temperature under argon in a 

schlenk tube until complete dissolution. The mixture was then heated and stirred at 100 °C overnight to give 

complete decomposition of the metallic precursor. 

 

2.3 Procedure for hydrogenation reaction on batch reactor 

1 mmol of trans-4-phenyl-3-buten-2-one (147.7 mg) was added to 1 mL of preformed colloidal palladium 

nanoparticles in [MMPIM][NTf2] ([Pd] = 0.01 mmol/mL). The system was then pressurized with dihydrogen and 

stirred at regulated temperature. The mixture was then cooled to room temperature. Products were extracted 

with cyclohexane (5×2 mL) from the catalytic phase. The organic phases were dried over anhydrous MgSO4, 

filtered and the solvent evaporated under reduced pressure. Conversions were determined by 
1
H NMR 

spectroscopy and GC-MS chromatography, using respectively 1,3,5-trimethylbenzene and decane as internal 

standards. 

 

2.4 Procedure for catalyst recycling test on hydrogenation reaction on batch reactor 

The hydrogenation product (4-phenylbutan-2-one) was extracted from the reaction mixture with cyclohexane 

(7×1 mL). The RTIL catalytic phase from the previous run was maintained for 30 min under reduced pressure. 

Trans-4-phenyl-3-buten-2-one was then re-added for the next run and treated under the same conditions than 

those applied for the first run. 

 

2.5 Procedure for hydrogenation reaction under flow-through configuration using the catalytic 

membrane 

0.2 mmol of trans-4-phenyl-buten-2-one (29.53 mg) was dissolved in 50 mL of ethanol in a round bottom flask. 

The solution was bubbled with dihydrogen at atmospheric pressure for 30 min. The solution was then filtered 

through the catalytic membrane under H2 pressure (0.1 bar).The permeate was collected and re-added to the 

round bottom flask for a second filtration. The procedure was repeated eight times with a total residence time 

of 2.6 s. The final permeate was collected and ethanol was evaporated under reduced pressure. The isolated 

product was then analyzed by 
1
H NMR spectroscopy and GC-MS chromatography, using respectively 1,3,5-

trimethylbenzene and decane as internal standards. 

  



3. Results and discussion 

3.1 Palladium nanoparticles synthesis 

Although RTIL stabilizes nanoparticles by electrostatic effect, sometimes RTIL alone may still not be sufficient 

to well disperse metallic nanoparticles. In that case, an additional co-stabilizer is required. PVP is one of the 

most frequently used polymers to stabilize MNPs since it is soluble in a lot of polar solvents. L. D. Pachon et 

al.(2008) found that part of the PVP adsorbs on the NP surface as a protective shell, while the other part 

dissolves freely in the suspension, creating a second protective shell and avoiding the collision between 

particles. In this work, palladium acetate was used as precursor in the presence (system 1) or in absence 

(system 2) of PVP. During the synthesis, palladium turned from orange (color of palladium acetate) to black, 

indicating the formation of Pd
0
 species. TEM images are given in Figure 1. Judging from the difference 

between system 1 and system 2, PdNPs were better dispersed with the presence of the additional polymer 

PVP in [MMPIM][NTf2]. The PdNPs corresponding to system 1 are more homogeneous in size (2.5 ± 2.0 nm) 

than those related to system 2 (4.3 ± 2.0 nm). For catalytic purposes, both systems were studied to check the 

effect of PVP, which can also over-protect PdNPs and therefore reduce the accessibility of the reagents to the 

metallic surface (poison effect).  

 

 
  

Figure 1: TEM images of PdNPs synthesized in [MMPIM][NTf2]: left, system 1 (in the presence of PVP); right : 

system 2 (in the absence of PVP) 

 

3.2 Catalytic hydrogenation of trans-4-phenyl-3-buten-2-one under batch conditions 

Pd catalytic systems 1 and 2 were applied to the benchmark hydrogenation reaction of trans-4-phenyl-3-

buten-2-one (Scheme 1 and Table 1) 

 

 
Scheme 1: Pd-catalyzed hydrogenation of trans-4-phenyl-3-buten-2-one using PdNPs coming from both 

system 1 (in the presence of PVP) and system 2 (in the absence of PVP) 

 

4-Phenylbutan-2-one was exclusively formed as product, which represents a model skeleton of fragrances 

(Jansat et al., 2009). System 1 preserved high activity under mild conditions (1-3 bar H2, 1 mol% Pd; entries 1-

6), even at low temperature (entry 6) and at low catalyst load (0.1 mol%, entries 7-9). Despite the similarity in 

NP mean diameter and the absence of PVP, system 2 was less active than system 1 (25% vs 61% conversion 

after 0.5h, entry 10 vs 3). 

Recycling of catalytic system 1 was then run for the benchmark hydrogenation using a substrate/Pd ratio of 

1,000 at 60 °C under 1 bar hydrogen pressure (for 1h each run). The catalytic system was reused 12 times 

without catalytic activity loss. As shown in Figure 2, the conversion rate kept above 90% through the 12 runs 

(product was extracted by cyclohexane after each run). Although NP agglomerations were observed after 5 

recycle runs (Figure 3), high conversions were retained. Any influence of the presence of aggregates was 

observed during the recycling. The H2 turned out to have an impact on aggregation of PdNPs in 

[MMPIM][NTf2]. 

 

  



Table 1: Pd-catalyzed hydrogenation of trans-4-phenyl-3-buten-2-one under batch conditions
a

Entry Pd System  Substrate/Pd 

Molar ratio 

P(H2) 

(bar) 

T 

(°C) 

Reaction time 

(hour) 

Conversion
b 

(%) 

1 1 100 3 80 1 100 

2 1 100 3 60 1 100 

3 1 100 1 60 0.5 61 

4 1 100 1 60 1 100 

5 1 100 1 35 1 60 

6 1 100 1 35 2 100 

7 1 1000 3 60 1 27 

8 1 1000 3 60 3 66 

9 1 1000 3 60 5 100 

10 2 100 1 60 0.5 25 
a
Starting from 1 mmol of substrate. 

b
Determined by 

1
H NMR spectroscopy and GC-MS chromatography, using respectively 1,3,5-

trimethylbenzene and decane as internal standards. 

 

 

Figure 2: Recycling of system 1 for the hydrogenation of trans-4-phenyl-3-buten-2-one (conditions: 60 °C, 1 

bar H2, 1 h for each run, substrate/Pd molar ratio= 1,000).  

 

 

Figure 3: TEM images of system 1 after 5 recycling runs 

 

3.3 Catalytic hydrogenation of trans-4-phenyl-3-buten-2-one under flow-through using catalytic 

polymeric membrane containing palladium nanoparticles 

We reported in a previous work that palladium nanoparticles (diameter of ~2 nm) can be synthesized and well 

stabilized in a poly (ionic liquid)gel grafted by UV-polymerization at the surface of a filtration membrane (Gu et 

al. 2015). This type of hybrid modified membranes exhibited a high activity in catalytic reaction such as 

Suzuki-Miyaura cross coupling without loss of metal during the reaction.  

Herein, we report the hydrogenation reaction of trans-4-phenyl-3-buten-2-one performed on the catalytic 

membrane under three different conditions (Figures 4 and 5). 

The catalytic performance of the colloidal system on the same reaction was taken as a reference for 

comparison (conditions: substrate/Pd = 100 under 1 bar of H2 at 60°C). In the flow through configuration 

(Figure 4-a), the reaction solution was bubbled with dihydrogen before filtered through the membrane. In the 

bubbling mode (Figure 4-b) and inside the autoclave (Figure 4-c), no filtration was involved. The membrane 

was submerged in the solution under bubbling (Figure 4-b) or under H2 pressure (Figure 4- c).  

Reaction conditions and conversions are given in Table 2. It is important to note here that this microfiltration 

membrane did not exhibit any retention of organic compounds nor adsorption. In the flow through 



configuration, complete conversion was achieved within 2.6 s of residence time (time of the substrate 

presence in the grafted layer, depending on flux and grafted layer length). Thus this reaction time was much 

lower (~3 orders of magnitude) than that observed under batch conditions despite a lower temperature (35 °C) 

and lower H2 pressure. 

 

Figure 4: Schematic representation of three different modes of using the catalytic 

 

Figure 5: Schematic representation of hydrogenation reaction under catalytic membrane flow-through 
configuration using a poly(ionic liquid) gel grafted layer load with catalytic palladium nanoparticles. 

It turned also out that the performance of the catalytic membrane was worse than the colloidal systems (see 

above) when no filtration was involved (i.e. bubbling vs autoclave mode). This is coherent with the reasoning 

on the mechanism of reaction acceleration by the catalytic membrane (Gu et al. 2015): when no forced flow 

through is involved, the high local catalyst concentration inside the membrane will not be able to play its role in 

multiplying the apparent reaction rate constant. Reaction became highly limited by diffusion of the substrate 

and H2 towards the nanoparticle surface in the submerged (autoclave) mode. The striking contrast of the 

catalytic performance between the flow through configuration and submerged configurations highlights the 

necessity of forced flow in reaching remarkable reaction acceleration. It should be mentioned that liquid phase 

hydrogenation reaction carried out in the flow through membrane reactor is limited by the low hydrogen 

solubility in the solvent (ethanol). One way to overcome the low H2 concentration is to operate the catalytic 

membrane reactor both feed and permeate at high hydrogen pressure keeping the transmembrane pressure 

at ~0.1 bar.  

Table 2: Reaction conditions for hydrogenation of trans-4-phenyl-3-buten-2-one using the catalytic membrane  

 Flow through Bubbling Autoclave

T (°C) 35 35 65 

P(H2)(bar) Bubbling under atmospheric pressure 1 

Reaction time (s) 2.6 1,800 3,600 

Conversion (%)
a 

100 <10 27 

VEtOH (mL) 50 20 5 
a
 Determined by 

1
H NMR spectroscopy and GC-MS chromatography, using respectively 1,3,5-

trimethylbenzene and decane as internal standards. 

4. Conclusions 

The catalytic membrane reactor appeared as an efficient tool for process intensification since reaction and 

separation (reactants, catalyst, and product) occurred in one single step when full conversion was observed. 

Pure product was obtained once the process was triggered in the catalytic membrane in flow through mode 

but not until the end of the reaction under batch conditions. Using the flow through mode, the hydrogenation 

reaction was intensified by a factor ~1,000 (based on reaction time) compared to the batch reactor despite a 

much lower temperature (35 °C instead of 60 °C, lower thermal energy) and H2 pressure. These promising 

results obtained with flat sheet membranes can also be intensified with hollow fiber geometry as observed in 



our previous works finding applications in synthesis and catalysis (Gu et al. 2015; Emin et al. 2014; Emin et al. 

2015). Due to the high efficiency of catalytic reactor membrane process in terms of reactivity, combined to a 

high compactness when hollow fibers are used, the productivity of the catalytic membrane reactor can reach 

the same level as, or outreaches microreactors (i.e. 10,000 ton per year per cubic meter). Therefore, the 

developed materials seem able to operate at larger scale with promising results in an environmental friendly 

way in terms of energy and chemicals (metal, solvent) consuming.  
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