74 research outputs found

    An MBA Capstone Consulting Experience in the Midst of COVID-19

    Get PDF
    In alignment with Molloy College’s commitment to civic engagement, the MBA program requires prospective graduates to complete its Capstone course, which entails providing consulting services to a not-for-profit organization. The course requires students to apply their cross-disciplinary knowledge and skills to solve real problems for their clients. In one short semester, students must form working relationships with fellow project members, develop an understanding of their client’s mission and objectives, and propose solutions that address their client’s challenging problems. The semester culminates with the delivery of a written proposal, a formal presentation to the client, and a final reflection. This paper describes the consulting problems faced by a class of Spring 2020 MBA students and the additional challenges they encountered due to the COVID-19 epidemic. It also describes the local organization the students worked with (the I’m Not Done Yet Foundation) and the solutions the students designed to increase awareness of the organization, improve its financial position, and streamline its internal operations

    Prospectus, April 16, 1980

    Get PDF
    EARTH DAY SCHEDULED; Procrastination hurts registration; Colleges effects on community studied; Letters to the Editor: Questioner is back; Student poets submit for anthology book; Women sponsors women\u27s music; CPD offers reduced tickets for Six Flags; Tornado warnings/watch procedures listed for emergency use if needed; Diabetes workshop; Children\u27s toys are more computerized; Chapin gives views on World Hunger Year; Dates to live by; Four great nights for Jazz Festival; London Calling could be most important release; Classifieds; Sports in Review: Baseball, Basketball Playoffs, College Recruits, Golf, Olympics; It\u27s not too late to turn in census; Cobras win \u27em in the fourth inning; School records fall at EIU; Hitting improves: Cobras win 3; Jacksonville b-ballers to play for Cobras; Park District sponsors kids dog show Sat.https://spark.parkland.edu/prospectus_1980/1030/thumbnail.jp

    MTFuzz: Fuzzing with a Multi-Task Neural Network

    Full text link
    Fuzzing is a widely used technique for detecting software bugs and vulnerabilities. Most popular fuzzers generate new inputs using an evolutionary search to maximize code coverage. Essentially, these fuzzers start with a set of seed inputs, mutate them to generate new inputs, and identify the promising inputs using an evolutionary fitness function for further mutation. Despite their success, evolutionary fuzzers tend to get stuck in long sequences of unproductive mutations. In recent years, machine learning (ML) based mutation strategies have reported promising results. However, the existing ML-based fuzzers are limited by the lack of quality and diversity of the training data. As the input space of the target programs is high dimensional and sparse, it is prohibitively expensive to collect many diverse samples demonstrating successful and unsuccessful mutations to train the model. In this paper, we address these issues by using a Multi-Task Neural Network that can learn a compact embedding of the input space based on diverse training samples for multiple related tasks (i.e., predicting for different types of coverage). The compact embedding can guide the mutation process by focusing most of the mutations on the parts of the embedding where the gradient is high. \tool uncovers 1111 previously unseen bugs and achieves an average of 2×2\times more edge coverage compared with 5 state-of-the-art fuzzer on 10 real-world programs.Comment: ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 202

    Little Things

    Get PDF
    We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey) that is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 Dwarf Irregular and 4 Blue Compact Dwarf galaxies that is centered around HI-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The HI-line data are characterized by high sensitivity (less than 1.1 mJy/beam per channel), high spectral resolution (less than or equal to 2.6 km/s), and high angular resolution (~6 arcseconds. The LITTLE THINGS sample contains dwarf galaxies that are relatively nearby (less than or equal to 10.3 Mpc; 6 arcseconds is less than or equal to 300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as HI map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the HI data we have GALEX UV and ground-based UBV and Halpha images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available on-line.Comment: In press in A

    A13K-0336: Airborne Multi-Wavelength High Spectral Resolution Lidar for Process Studies and Assessment of Future Satellite Remote Sensing Concepts

    Get PDF
    NASA Langley recently developed the world's first airborne multi-wavelength high spectral resolution lidar (HSRL). This lidar employs the HSRL technique at 355 and 532 nm to make independent, unambiguous retrievals of aerosol extinction and backscatter. It also employs the standard backscatter technique at 1064 nm and is polarization-sensitive at all three wavelengths. This instrument, dubbed HSRL-2 (the secondgeneration HSRL developed by NASA Langley), is a prototype for the lidar on NASA's planned Aerosols- Clouds-Ecosystems (ACE) mission. HSRL-2 completed its first science mission in July 2012, the Two-Column Aerosol Project (TCAP) conducted by the Department of Energy (DOE) in Hyannis, MA. TCAP presents an excellent opportunity to assess some of the remote sensing concepts planned for ACE: HSRL-2 was deployed on the Langley King Air aircraft with another ACE-relevant instrument, the NASA GISS Research Scanning Polarimeter (RSP), and flights were closely coordinated with the DOE's Gulfstream-1 aircraft, which deployed a variety of in situ aerosol and trace gas instruments and the new Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). The DOE also deployed their Atmospheric Radiation Measurement Mobile Facility and their Mobile Aerosol Observing System at a ground site located on the northeastern coast of Cape Cod for this mission. In this presentation we focus on the capabilities, data products, and applications of the new HSRL-2 instrument. Data products include aerosol extinction, backscatter, depolarization, and optical depth; aerosol type identification; mixed layer depth; and rangeresolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). Applications include radiative closure studies, studies of aerosol direct and indirect effects, investigations of aerosol-cloud interactions, assessment of chemical transport models, air quality studies, present (e.g., CALIPSO) and future (e.g., EarthCARE) satellite calibration/validation, and development/assessment of advanced retrieval techniques for future satellite applications (e.g., lidar+polarimeter retrievals of aerosol and cloud properties). We will also discuss the relevance of HSRL-2 measurement capabilities to the ACE remote sensing concept

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    • …
    corecore