716 research outputs found

    Thermal transport in porous Si nanowires from approach-to-equilibrium molecular dynamics calculations

    Get PDF
    We study thermal transport in porous Si nanowires (SiNWs) by means of approach-to-equilibrium molecular dynamics simulations. We show that the presence of pores greatly reduces the thermal conductivity, Îș, of the SiNWs as long mean free path phonons are suppressed. We address explicitly the dependence of Îș on different features of the pore topology-such as the porosity and the pore diameter-and on the nanowire (NW) geometry-diameter and length. We use the results of the molecular dynamics calculations to tune an effective model, which is capable of capturing the dependence of Îș on porosity and NW diameter. The model illustrates the failure of Matthiessen's rule to describe the coupling between boundary and pore scattering, which we account for by the inclusion of an additional empirical term

    Molecular Dynamics Simulations of Thermal Transport in Solid State Systems

    Get PDF
    In this chapter, we provide a synoptic review of the theoretical/computational approaches currently used to characterize thermal transport at the nanoscale, a topic of paramount importance for several applications and technological thermal management requirements. We focus in particular on the description of the atomistic techniques based on equilibrium (EMD), non-equilibrium (NEMD), and approach to equilibrium (AEMD) molecular dynamics (MD), which allow to efficiently describe relatively large and structurally complex systems with a reduced computational cost as compared to fully "ab-initio" techniques. We describe the theoretical background for each simulation strategy, as well as their implementation in state-of-the-art MD codes by underlying their intrinsic limitations and providing strategies to control some of them. We finally perform a series of benchmark calculations on bulk crystalline silicon by showing that the estimated thermal conductivity is weakly dependent on the specific strategy actually employed, while the overall computational cost is largely dependent on it

    Evidence of thermal transport anisotropy in stable glasses of vapour deposited organic molecules

    Full text link
    Vapour-deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapour-deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limit the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.Comment: main manuscript: 17 pages and 7 figures; supplementary material: 6 pages and 7 figure

    Direct visualization of the charge transfer in Graphene/α\alpha-RuCl3_3 heterostructure

    Get PDF
    We investigate the electronic properties of a graphene and α\alpha-ruthenium trichloride (hereafter RuCl3_3) heterostructure, using a combination of experimental and theoretical techniques. RuCl3_3 is a Mott insulator and a Kitaev material, and its combination with graphene has gained increasing attention due to its potential applicability in novel electronic and optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy, low energy electron microscopy, and density functional theory (DFT) calculations we are able to provide a first direct visualization of the massive charge transfer from graphene to RuCl3_3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. The electronic band structure is compared to DFT calculations that confirm the occurrence of a Mott transition for RuCl3_3. Finally, a measurement of spatially resolved work function allows for a direct estimate of the interface dipole between graphene and RuCl3_3. The strong coupling between graphene and RuCl3_3 could lead to new ways of manipulating electronic properties of two-dimensional lateral heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power opto-electronics devices

    Sensitivity and specificity of in vivo COVID-19 screening by detection dogs: Results of the C19-Screendog multicenter study

    Get PDF
    Trained dogs can recognize the volatile organic compounds contained in biological samples of patients with COVID-19 infection. We assessed the sensitivity and specificity of in vivo SARS-CoV- 2 screening by trained dogs. We recruited five dog-handler dyads. In the operant conditioning phase, the dogs were taught to distinguish between positive and negative sweat samples collected from volunteers’ underarms in polymeric tubes. The conditioning was validated by tests involving 16 positive and 48 negative samples held or worn in such a way that the samples were invisible to the dog and handler. In the screening phase the dogs were led by their handlers to a drive-through facility for in vivo screening of volunteers who had just received a nasopharyngeal swab from nursing staff. Each volunteer who had already swabbed was subsequently tested by two dogs, whose responses were recorded as positive, negative, or inconclusive. The dogs’ behavior was constantly monitored for attentiveness and wellbeing. All the dogs passed the conditioning phase, their responses showing a sensitivity of 83-100% and a specificity of 94-100%. The in vivo screening phase involved 1251 subjects, of whom 205 had a COVID-19 positive swab and two dogs per each subject to be screened. Screeningsensitivity and specificity were respectively 91.6-97.6% and 96.3-100% when only one dog was involved, whereas combined screening by two dogs provided a higher sensitivity. Dog wellbeing was also analysed: monitoring of stress and fatigue suggested that the screening activity did not adversely impact the dogs’ wellbeing. This work, by screening a large number of subjects, strengthen recent findings that trained dogs can discriminate between COVID-19 infected and healthy human subjects and introduce two novel research aspects: i) assessement of signs of fatigue and stress in dogs during training and testing, and ii) combining screening by two dogs to improve detection sensitivity and specificity. Using some precautions to reduce the risk of infection and spillover, in vivo COVID-19 screening by a dog-handler dyad can be suitable to quickly screen large numbers of people: it is rapid, non- invasiveand economical, since it does not involve actual sampling, lab resources or waste management, and is suitable to screen large numbers of people

    Colorectal Cancer Stage at Diagnosis Before vs During the COVID-19 Pandemic in Italy

    Get PDF
    IMPORTANCE Delays in screening programs and the reluctance of patients to seek medical attention because of the outbreak of SARS-CoV-2 could be associated with the risk of more advanced colorectal cancers at diagnosis. OBJECTIVE To evaluate whether the SARS-CoV-2 pandemic was associated with more advanced oncologic stage and change in clinical presentation for patients with colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This retrospective, multicenter cohort study included all 17 938 adult patients who underwent surgery for colorectal cancer from March 1, 2020, to December 31, 2021 (pandemic period), and from January 1, 2018, to February 29, 2020 (prepandemic period), in 81 participating centers in Italy, including tertiary centers and community hospitals. Follow-up was 30 days from surgery. EXPOSURES Any type of surgical procedure for colorectal cancer, including explorative surgery, palliative procedures, and atypical or segmental resections. MAIN OUTCOMES AND MEASURES The primary outcome was advanced stage of colorectal cancer at diagnosis. Secondary outcomes were distant metastasis, T4 stage, aggressive biology (defined as cancer with at least 1 of the following characteristics: signet ring cells, mucinous tumor, budding, lymphovascular invasion, perineural invasion, and lymphangitis), stenotic lesion, emergency surgery, and palliative surgery. The independent association between the pandemic period and the outcomes was assessed using multivariate random-effects logistic regression, with hospital as the cluster variable. RESULTS A total of 17 938 patients (10 007 men [55.8%]; mean [SD] age, 70.6 [12.2] years) underwent surgery for colorectal cancer: 7796 (43.5%) during the pandemic period and 10 142 (56.5%) during the prepandemic period. Logistic regression indicated that the pandemic period was significantly associated with an increased rate of advanced-stage colorectal cancer (odds ratio [OR], 1.07; 95%CI, 1.01-1.13; P = .03), aggressive biology (OR, 1.32; 95%CI, 1.15-1.53; P < .001), and stenotic lesions (OR, 1.15; 95%CI, 1.01-1.31; P = .03). CONCLUSIONS AND RELEVANCE This cohort study suggests a significant association between the SARS-CoV-2 pandemic and the risk of a more advanced oncologic stage at diagnosis among patients undergoing surgery for colorectal cancer and might indicate a potential reduction of survival for these patients

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    • 

    corecore