298 research outputs found

    The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins

    Get PDF
    The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy

    Endomorphisms of superelliptic jacobians

    Full text link
    Let K be a field of characteristic zero, n>4 an integer, f(x) an irreducible polynomial over K of degree n, whose Galois group is doubly transitive simple non-abelian group. Let p be an odd prime, Z[\zeta_p] the ring of integers in the p-th cyclotomic field, C_{f,p}:y^p=f(x) the corresponding superelliptic curve and J(C_{f,p}) its jacobian. Assuming that either n=p+1 or p does not divide n(n-1), we prove that the ring of all endomorphisms of J(C_{f,p}) coincides with Z[\zeta_p].Comment: Several typos have been correcte

    Modular symbols in Iwasawa theory

    Full text link
    This survey paper is focused on a connection between the geometry of GLd\mathrm{GL}_d and the arithmetic of GLd1\mathrm{GL}_{d-1} over global fields, for integers d2d \ge 2. For d=2d = 2 over Q\mathbb{Q}, there is an explicit conjecture of the third author relating the geometry of modular curves and the arithmetic of cyclotomic fields, and it is proven in many instances by the work of the first two authors. The paper is divided into three parts: in the first, we explain the conjecture of the third author and the main result of the first two authors on it. In the second, we explain an analogous conjecture and result for d=2d = 2 over Fq(t)\mathbb{F}_q(t). In the third, we pose questions for general dd over the rationals, imaginary quadratic fields, and global function fields.Comment: 43 page

    Equidistribution of Heegner Points and Ternary Quadratic Forms

    Get PDF
    We prove new equidistribution results for Galois orbits of Heegner points with respect to reduction maps at inert primes. The arguments are based on two different techniques: primitive representations of integers by quadratic forms and distribution relations for Heegner points. Our results generalize one of the equidistribution theorems established by Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor, we deduce an effective surjectivity theorem for the reduction map from Heegner points to supersingular points at a fixed inert prime. Our results are applicable to the setting considered by Kolyvagin in the construction of the Heegner points Euler system

    Encoding multistate charge order and chirality in endotaxial heterostructures

    Full text link
    Intrinsic resistivity changes associated with charge density wave (CDW) phase transitions in 1T-TaS2_2 hold promise for non-volatile memory and computing devices based on the principle of phase change memory (PCM). High-density PCM storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2_2. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in 1T-TaS2_2 devices. Here, we demonstrate the synthesis of nanothick verti-lateral 1H-TaS2_2/1T-TaS2_2 heterostructures in which the number of endotaxial metallic 1H-TaS2_2 monolayers dictates the number of high-temperature resistance transitions in 1T-TaS2_2 lamellae. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps. This thermally-induced polytype conversion nucleates at folds and kinks where interlayer translations that relax local strain favorably align 1H and 1T layers. This work positions endotaxial TaS2_2 heterostructures as prime candidates for non-volatile device schemes implementing coupled switching of structure, chirality, and resistance

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Endomorphism algebras of Abelian varieties with special reference to superelliptic Jacobians

    Get PDF
    This is (mostly) a survey article. We use an information about Galois properties of points of small order on an Abelian variety in order to describe its endomorphism algebra over an algebraic closure of the ground field. We discuss in detail applications to jacobians of cyclic covers of the projective line

    Retention and diffusion of radioactive and toxic species on cementitious systems: Main outcome of the CEBAMA project

    Get PDF
    Cement-based materials are key components in radioactive waste repository barrier systems. To improve the available knowledge base, the European CEBAMA (Cement-based materials) project aimed to provide insight on general processes and phenomena that can be easily transferred to different applications. A bottom up approach was used to study radionuclide retention by cementitious materials, encompassing both individual cement mineral phases and hardened cement pastes. Solubility experiments were conducted with Be, Mo and Se under high pH conditions to provide realistic solubility limits and radionuclide speciation schemes as a prerequisite for meaningful adsorption studies. A number of retention mechanisms were addressed including adsorption, solid solution formation and precipitation of radionuclides within new solid phases formed during cement hydration and evolution. Sorption/desorption experiments were carried out on several anionic radionuclides and/or toxic elements which have received less attention to date, namely: Be, Mo, Tc, I, Se, Cl, Ra and 14C. Solid solution formation between radionuclides in a range of oxidation states (Se, I and Mo) with the main aqueous components (OH−, SO4 −2, Cl−) of cementitious systems on AFm phases were also investigated

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore