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ENDOMORPHISM ALGEBRAS OF ABELIAN VARIETIES WITH

SPECIAL REFERENCE TO SUPERELLIPTIC JACOBIANS

YURI G. ZARHIN

Abstract. This is (mostly) a survey article. We use an information about
Galois properties of points of small order on an abelian variety in order to

describe its endomorphism algebra over an algebraic closure of the ground
field. We discuss in detail applications to jacobians of cyclic covers of the
projective line.
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1. Definitions and statements

Throughout this paper K is a field and Ka its algebraic closure. We write
Ksep ⊂ Ka for the separable algebraic closure of K in Ka and Gal(K) for the
absolute Galois group Gal(Ksep/K) = Aut(Ka/K). Throughout the paper ℓ is a
prime different from char(K). If A is a finite set then we write |A| for its cardinality.
For every abelian varieties X and Y over Ka we write Hom(X,Y ) for the group of
all Ka-homomorphisms from X to Y .

If X is an abelian variety of positive dimension over K then EndK(X) and
End(X) stand for the rings of all its K-endomorphisms and Ka-endomorphisms
respectively. It is known [11] that all endomorphisms of X are defined over Ksep.

The ring EndK(X) is a subring of End(X) and they both have the same identity

element (automorphism), which we denote by 1X . We write End0K(X) and End0(X)
for the corresponding Q-algebras EndK(X) ⊗ Q and End(X) ⊗ Q; they both are
semisimple finite-dimensional algebras over the field Q of rational numbers. We
have

Q · 1X ⊂ End0K(X) ⊂ End0(X).

The aim of this paper is to explain how one may obtain some information about
the structure of End0(X) in certain favorable circumstances, knowing only the
Galois properties of certain points of prime order and the “multiplicities” of the
action of a certain endomorphism field on the differentials of the first kind on X .
One may view this paper as an exposition of ideas that were developed in [38] and
[44, 45] and applied to superelliptic jacobians and prymians [37, 38, 36, 46, 47].
We also use this opportunity to correct inaccuracies in the statements of Theorems
1.1(ii), 3.12(ii), 5.2(ii) and Remark 3.2 of [44] and fill gaps in the proof of Theorem
3.12(ii) [44, p. 702] in [44, p. 697]). (See also [45] for the corrected version of
[44].) We also fill a gap in the proof of [38, Theorem 4.2,(i) and (ii)(a)] (caused by
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2 YURI G. ZARHIN

improper use of [7, Theorem 4.3.2] in [38, Remark 4.1]), see below Theorems 5.1
and 5.4 and their proofs (Section 5).

Here is a couple of sample results that deal with jacobians J(Cf,p) of (smooth
projective models of) superelliptic curves

Cf,p : yp = f(x).

Hereafter p is a prime and we assume that char(K) 6= p while f(x) ∈ K[x] is a
separable polymomial of degree n ≥ 3. We write Z[ζp] for the ring of integers in
the pth cyclotomic field Q(ζp). (When p = 2 we have Z[ζp] = Z and Cf,2 becomes
the hyperelliptic curve y2 = f(x).) The choice of a primitive pth root of unity in
Ka gives rise to a natural ring embedding

Z[ζp] →֒ End(J(Cf,p))

(see [18, 15] and Section 8 below). If p does not divide n then the dimension of
J(Cf,p) is (n− 1)(p− 1)/2; otherwise it is (n− 2)(p− 1)/2.

Theorem 1.1 (see Th. 2.1 of [27], Th. 2.1 of [37] and Th. 3.8 of [38]). Let us
assume that char(K) 6= 2 and f(x) ∈ K[x] is an irreducible polynomial of degree
n ≥ 5, whose Galois group Gal(f) over K enjoys one of the following two properties.

• char(K) 6= 3 and Gal(f) is either the full symmetric group Sn or the alter-
nating group An;

• n ∈ {11, 12, 22, 23, 24} and Gal(f) is isomorphic to the corresponding Math-
ieu group Mn.

Let Cf,2 : y2 = f(x) be the corresponding hyperelliptic curve of genus [(n − 1)/2]
over K and J(Cf,2) its jacobian, which is a [(n− 1)/2]-dimensional abelian variety
over K.

Then End(J(Cf,2)) = Z. In particular, J(Cf,2) is absolutely simple.

Theorem 1.2 (see Th. 1.1 of [36]). Let us assume that char(K) = 0 and f(x) ∈
K[x] is an irreducible polynomial of degree n ≥ 5, whose Galois group Gal(f) over
K is either the full symmetric group Sn or the alternating group An. Let p be
an odd prime, Cf,p the corresponding superelliptic curve over K and J(Cf,p) its
jacobian, which is an abelian variety over K.

Then End(J(Cf,p)) = Z[ζp]. In particular, J(Cf,p) is absolutely simple.

Theorem 1.3 (see Th. 1.1 of [44], Th. 1.1 of [45] and Theorem 8.7 below). 1

Suppose that K has characteristic zero, n ≥ 4 and p is an odd prime that does not
divide n. Assume also that either n = p+ 1 or p does not divide n− 1.

Suppose that K contains a primitive pth root of unity and Gal(f) is a doubly
transitive permuation group (on the set of roots of f(x)) that does not contain a
proper normal subgroup, whose index divides n− 1.

Then End(J(Cf,p)) = Z[ζp]. In particular, J(Cf,p) is absolutely simple.

The paper is organized as follows. Section 2 contains basic definitions and reviews
elementary results concerning the structure of End0(X) and End0K(X) under certain
assumptions on the Galois properties of the group Xℓ of points of prime order ℓ on
X related to the image G̃ℓ,X,K of the Galois group in Aut(Xℓ). These results are
generalized in Section 3 when X admits multiplications from the ring O of integers
in a number field E and Xℓ is replaced by the group Xλ of points on X that are

1In Th. 1.1 of [44] the assertion (ii)(a) actually is not proven and should be ignored.
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killed by multiplication from a maximal ideal λ ⊂ O. (The results of Section 2
correspond to the case O = Z, E = Q, λ = ℓZ.) In order to prove the results of
Section 3, we need to use results from the theory of (central semi)simple algebras
over fields, which are discussed in Section 4. We prove the assertions of Section 3 in
Section 5. In Section 6 the Lie algebra Lie(X) of X (which is the dual of the space
of differentials of the first kind) enters the picture: assuming that char(K) = 0,
we discuss the action of E on Lie(X), which allows us to extend the results of
Section 3. We are going to apply these results to superelliptic (hypergeometric)
jacobians J(Cf,q) of curves Cf,q and their natural abelian subvarieties J (f,q), which
are provided with the action of the qth cyclotomic field E = Q(ζq) where q is
a prime power. (Here Cf,q is the smooth projective module of the affine curve
yq = f(x) where f(x) is a polynomial without multiple roots.) In order to do
this, we need to discuss certain constructions related to permutation groups and
permutation modules, which is done in Section 7. Section 8 contains results about
endomorphism algebras of J (f,q). Section 9 contains auxiliary results about the

structure of the Galois module J
(f,q)
λ where λ is the maximal ideal of the qth

cyclotomic ring Z[ζq ] generated by (1− ζq).
Acknowledgements. I am deeply grateful to Jiangwei Xue, who had read

the first version of the manuscript and made numerous valuable comments and
suggestions that helped to improve the exposition. Part of this work was done in
June 2017 during my stay at Steklov Mathematical Institute (Russian Academy of
Sciences, Moscow), whose hospitality is gratefully acknowledged.

2. Definitions and first statements

2.1. We write CK,X and CX for the centers of End0K(X) and End0(X). Both CK,X

and CX are isomorphic to direct sums of number fields; each of those fields is either
totally real or CM. It is well known that X is K-isogenous to a self-product of a K-
simple abelian variety ZK (respectively, is isogenous over Ka to a self-product of an
absolutely simple abelian variety Z over Ka) if and only if CK,X (respectfully, CX)
is a field. If this is the case then there is a canonical isomorphism between the fields
CK,X and CK,ZK

(respectfully between the fields CX and CZ). In addition, CX

is a field if and only if End0(X) is a simple Q-algebra. In general, the semisimple
Q-algebra End0(X) splits into a finite direct sum

End0(X) =
∑

s∈I(X)

Ds

of simple Q-algebras Ds. (Here the finite nonempty set I(X) is identified with

the set of (nonzero) minimal two-sided ideals in End0(X).) Let es be the identity
element of Ds ⊂ End0(X). We have

1X =
∑

s∈I(X)

es ∈ End0(X), e2s = es, eset = 0 ∀s 6= t.

Let us choose a positive integer N such that all Nes ∈ End(X) and consider

Xs := (Nes)(X) ⊂ X,

which is an abelian subvariety of X that is defined over Ka.
The following assertion is contained in [38, Remark 1.4 on pp. 192-193].
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Lemma 2.2. (i) The Q-algebras Ds and End0(Xs) are isomorphic. In par-

ticular, End0(Xs) is a simple Q-algebra, i.e., Xs is isogenous over Ka to a
self-product of simple abelian variety over Ka.

(ii) Hom(Xs, Xt) = {0} for each s 6= t .
(iii) The natural Ka-homomorphism of abelian varieties

ΠX :
∏

s∈I(X)

Xs → X, {xs}s∈I(X) 7→
∑

s∈I(X)

xs

is an isogeny.

2.3. Since X is defined over K, each σ ∈ Gal(K) and u ∈ End(X) give rise to
σu ∈ End(X) such that

σu(x) = σ(u(σ−1x)) ∀x ∈ X(Ka).

This gives us a continuous group homomorphism [22]

κX,K : Gal(K) → Aut(End(X)), kX(σ)(u) =σ u ∀σ ∈ Gal(K), u ∈ End(X)

with finite image. (Here Aut(End(X)) is provided with discrete topology). If L/K
is a finite separable algebraic field extension with L ⊂ Ksep then Gal(L) is an open
subgroup of finite index in Gal(K) and the restriction of κX,K to Gal(L) coincides
with

κX,L : Gal(L) → Aut(End(X)).

It is well known that EndL(X) coincides with the subring End(X)Gal(L) of Gal(L)-
invariants, i.e.,

EndL(X) = {u ∈ End(X) |σ u = u ∀σ ∈ Gal(L)}.

In particular,

EndK(X) = End(X)Gal(K) = {u ∈ End(X) |σ u = u ∀σ ∈ Gal(K)}.

The kernel ker(κX,K) is a closed normal subgroup of finite index in Gal(K) and
therefore is open, i.e. coincides with the Galois (sub)group Gal(FX,K) of a cer-
tain overfield FX,K ⊃ K such that FX,K ⊂ Ksep and FX,K/K is a finite Galois
extension. Clearly, EndL(X) = End(X) (i.e., all endomorphisms of X are defined
over L) if and only if L ⊃ FX,K . In general, FX,L coincides with the compositum
FX,KL of FX,K and L in Ksep.

The following assertion is contained in [38, Remark 1.4 on pp. 192-193].

Lemma 2.4. The finite subset {Nes | s ∈ I(X)} of End(X) is Gal(K)-stable. If
EndK(X) has no zero divisors then the action of Gal(K) on I(X) is transitive and

dim(Xs) = dim(X)/|I(X)|,

which does not depend on a choice of s ∈ I(X).

Corollary 2.5. If End0K(X) is a number field then the action of Gal(K) on I(X)
is transitive and |I(X)| divides dim(X).

Proof. Since End0K(X) is a number field, EndK(X) is an order in this field and
therefore has no zero divisors. So, we may apply Lemma 2.4 and get the desired
transitivity and the equality dim(Xs) = dim(X)/|I(X)|. Since all three numbers
dim(Xs), dim(X) and |I(X)| are nonzero integers, we conclude that |I(X)| divides
dim(X). �
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Theorem 2.6. Let F/K be a finite Galois field extension such that F ⊂ Ksep and

all endomorphisms of X are defined over F . If End0K(X) is a number field and
Gal(F/K) does not contain a proper subgroup, whose index divides dim(X) then

I(X) is a singleton, i.e., End0(X) is a simple Q-algebra.

Proof. Since all endomorphisms of X are defined over F ,

F ⊃ FX,K , Gal(F ) ⊂ Gal(FX,K)

and κX,K : Gal(K) → Aut(End(X)) factors through the quotient Gal(K)/Gal(F ) =
Gal(F/K). This implies that the action of Gal(K) on I(X) also factors through
Gal(F/K). By Corollary 2.5 Gal(K) acts transitively on I(X) and therefore
the corresponding Gal(F/K)-action on I(X) is also transitive. This implies that
Gal(F/K) has a subgroup of index |I(X)|. By Corollary 2.5, |I(X)| divides dim(X)
and therefore this subgroup must coincide with the whole Gal(F/K), i.e., I(X) is
a singleton. �

LetXℓ be the kernel of multiplication by ℓ inX(Ka). It is well known [11, 14] that
Xℓ is a Gal(K)-invariant subgroup of X(Ksep), which is (as a group) a 2dim(X)-
dimensional vector space over the prime finite field Fℓ of characteristic ℓ. This gives
rise to the natural continuous group homomorphism

ρ̃ℓ,X,K : Gal(K) → AutFℓ
(Xℓ),

whose image we denote by G̃ℓ,X,K . By definition, we get the surjective continuous
homomorphism

ρ̃ℓ,X,K : Gal(K) ։ G̃ℓ,X,K ⊂ AutFℓ
(Xℓ).

One may view the vector space Xℓ as (faithful) G̃ℓ,X,K-module.
The next well known lemma goes back to K. Ribet [17] and S. Mori [10].

Lemma 2.7. ( [38, Lemma 1.2 on p. 191]) If the centralizer

EndG̃ℓ,X,K
(Xℓ) = Fℓ

then

EndK(X) = Z, End0K(X) = Q.

The next statement follows readily from [38, Th. 1.5 on pp. 193–194].

Theorem 2.8. Let us assume that EndG̃ℓ,X,K
(Xℓ) is a field. Suppose that G̃ℓ,X,K

does not contain a proper subgroup, whose index divides dim(X). Then End0(X)
is a simple Q-algebra.

The following assertion is an immediate corollary of Theorem 2.8 and [38, Th.
1.6 on pp. 195].

Theorem 2.9. Let us assume that

EndG̃ℓ,X,K
(Xℓ) = Fℓ.

Suppose that G̃ℓ,X,K does contain neither a proper subgroup with index dividing

dim(X) nor a normal subgroup of index 2. Then End0(X) is a central simple
Q-algebra.
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3. Abelian varieties with multiplication

In this section we discuss analogues of results of Section 1 when the endomor-
phism algebra of an abelian variety contains a given number field.

3.1. Let E be a number field and

i : E →֒ End0K(X) ⊂ End0(X)

be a Q-algebra embedding such that i(1) = 1X . It is known [21, Prop. 2 on p. 36])
that the degree [E : Q] divides 2dim(X). Let us put

dX,E =
2dim(X)

[E : Q]
.

We write End0(X, i) for the centralizer of i(E) in End0(X) and End0K(X, i) for the
centralizer of i(E) in End0K(X). We have

i(E) ⊂ End0K(X, i) ⊂ End0(X, i) ⊂ End0(X), End0K(X, i) ⊂ End0K(X) ⊂ End0(X).

We write i(E)CX for the compositum of i(E) and CX in End0(X). In other words,
i(E)CX is the image of the homomorphism of Q-algebras

i⊗ idCX
: E ⊗Q CX → End0(X), e⊗ c 7→ i(e)c.

Clearly E ⊗Q CX is a direct sum of fields, each of which contains a subfield iso-
morphic to E. This implies that i(E)CX is a direct sum of fields, each of which
contains a subfield isomorphic to E. (In addition, each such a field contains a
subfield isomorphic to CX if the latter is a field.)

Clearly, i(E)CX commutes with i(E) and therefore lies in End0(X, i) and even
in its center.

The next three assertions will be proven in in Section 5.
The first one is a corollary of standard facts about centralizers and bicentralizers

of semisimple subalgebras of semisimple algebras. (See Theorem 4.1 below.)

Theorem 3.2. End0(X, i) is a finite-dimensional semisimple Q-algebra, whose
center coincides with i(E)CX .

The next two statements deal with the E-dimension of End0(X, i).

Theorem 3.3. Let us consider End0(X, i) as an E-algebra. Then the E-algebra
End0(X, i) is semisimple and

dimE(End
0(X, i)) ≤

(

2dim(X)

[E : Q]

)2

.

Theorem 3.4. Suppose that

dimE(End
0(X, i)) =

(

2dim(X)

[E : Q]

)2

.

Then E contains CX and therefore CX is a field. In addition, End0(X, i) is a central
simple E-algebra and X is an abelian variety of CM type over Ka. In particular,
X is isogenous over Ka to a self-product of an absolutely simple abelian variety of
CM type over Ka.
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Example 3.5. Let E = Q. Then End0(X, i) = End0(X). We have

dimQ(End
0(X)) ≤ (2g)2;

the equalty holds if and only if char(Ka) > 0 and X is isogenous over Ka to a
self-product of a supersingular elliptic curve [27].

3.6. Let O be the ring of integers in E. If λ is a maximal ideal in O then we write
k(λ) for its (finite) residue field O/λ. For all but finitely many λ

char(k(λ)) 6= char(K).

Let us assume that
i(O) ⊂ EndK(X).

Then the center of EndK(X, i) contains i(O) and EndK(X, i) becomes an i(O) ∼= O-
algebra. Notice that O is a Dedekind ring and the O-module EndK(X) is finitely
generated torsion-free. Therefore EndK(X) is isomorphic (as an O-module) to a
direct sum of finitely many nonzero ideals of O. Let us assume that char(k(λ)) 6=
char(K) and consider

Xλ = {x ∈ X(Ka) | i(u)x = 0 ∀u ∈ λ ⊂ O} ⊂ X(Ka).

It is known [16] that Xλ is a Gal(K)-invariant finite subgroup of X(Ksep) that
carries the natural structure of dX,E -dimensional vector space over k(λ). The Galois
action on Xλ induces the continuous group homomorphism

ρ̄λ,X,K : Gal(K) → Autk(λ)(Xλ),

whose image we denote by G̃λ,X,K . As above (in the case of E = Q,O = Z, λ =
ℓZ)), we get the surjective continuous group homomorphism

ρ̄λ,X = ρ̄λ,X,K : Gal(K) ։ G̃λ,X,K ⊂ Autk(λ)(Xλ).

If K ′ ⊂ Ksep is an overfield of K then ρ̄λ,X,K′ coincides with the restriction of
ρ̄λ,X,K to Gal(K ′) ⊂ Gal(K).

Let K(Xλ) ⊂ Ksep be the field of definition of all points of Xλ. Then the
subgroup Gal(K(Xλ)) of Gal(K) coincides with ker(ρ̄λ,X,K), K(Xλ)/K is a finite
Galois extension and ρ̄λ,X,K induces the canonical isomorphism

Gal(K(Xλ)/K) = Gal(K)/Gal(K(Xλ)) ∼= G̃λ,X,K ⊂ Autk(λ)(Xλ).

3.7. We will need the following result related to the notion of minimal covers of
groups [8].

Lemma 3.8. Let F/K be a finite Galois field extension and let L/K be a Galois
field extension such that

K ⊂ L ⊂ F.

Then there exists an overfield K of K that is a subfield of F and enjoys the following
properties.

(i) K ⊂ K ⊂ F .
(ii) Let φK,L be the restriction of the natural surjective group homomorphism

Gal(F/K) ։ Gal(L/K) to Gal(F/K) ⊂ Gal(F/K). Then the group homo-
morphism φK,L : Gal(F/K) → Gal(L/K) is surjective.

(iii) K is maximal among the fields that satisfy (i) and (ii).

Proof. Clearly, K = K satisfies (i) and (ii). The existence of maximal K follows
from the finiteness of the set of intermediate fields that satisfy (i). �
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Remark 3.9. (i) The maximality of K in Lemma 3.8 means that surjective
φK,L : Gal(F/K) → Gal(L/K) is a minimal cover in a sense of [8], i.e., if H
is a subgroup of Gal(F/K) that maps onto Gal(L/K) then H = Gal(F/K).
Indeed, the subfield FH of F enjoys the properties (i–ii) and contains
FGal(F/K) = K. In light of the maximality of K, we have FH = K and
therefore Gal(F/K) = H . (Such a K is not necessarily unique.)

ii) Suppose that H is a subgroup in Gal(F/K) of index d > 1. By (i), the
index d′ := (Gal(L/K) : φK,L(H)) > 1. I claim that d′ divides d. Indeed, if
φ = φK,L then

d =
|Gal(F/K)|

|H |
=

| ker(φ)| · |Gal(L/K)|

| ker(φ)
⋂

H ||φ(H)|
=

| ker(φ)|

| ker(φ)
⋂

H |
·
|Gal(L/K)|

|φ(H)|
=

| ker(φ)|

| ker(φ)
⋂

H |
· d′.

Since ker(φ)
⋂

H is a subgroup of ker(φ), Lagrange’s theorem tells us that
| ker(φ)

⋂

H | divides | ker(φ)| and therefore d′ divides d.
This implies that if d > 1 is an integer such that Gal(L/K) does not

contain a proper subgroup of index dividing d then Gal(F/K) also does not
contain a proper subgroup of index dividing d.

Remark 3.10. Let K,L, F be as in Lemma 3.8. Suppose that T is a field that is
an overfield of K and a subfield of F . Since the field extension L/K is Galois, the
field extension T L/T is also Galois. Hereafter T L is the compositum of T and L,
which is a subfield of F with

(1) [T L : K] ≤ [T : K][L : K];

the equality holds if and only if T and L are linearly disjoint over K.
The assertion that T enjoys the property (ii) of Lemma 3.8 means that T and L

are linearly disjoint over K. Indeed, suppose that T and L are linearly disjoint

over K. Then

[T L : K] = [T : K][L : K].

Since

[T L : K] = [T L : T ][T : K],

we conclude that [T L : T ] = [L : K] and therefore the natural injective group
homomorphism (“restriction” to L)

resL : Gal(T L/T ) → Gal(L/K)

is a map between two finite groups of the same order [L : K] and therefore is
an isomorphism. Notice that resL coincides with the restriction to Gal(T L/T ) ⊂
Gal(F/K) of φT ,L : Gal(F/T ) → Gal(L/K). This implies that φT ,L is surjective,
i.e., T enjoys the property (ii) of Lemma 3.8.

Conversely, let us assume that φT ,L is surjective. Notice that φT ,L factors
through Gal(F/T ) ։ Gal(T L/T ) and therefore the surjectiveness of φT ,L implies
(actually, is equivalent to) the surjectiveness of

resL : Gal(T L/T ) → Gal(L/K),

which, in turn, implies the inequality [T L : T ] ≥ [L : K]. This implies that

[T L : K] = [T L : [T ][T : K] ≥ [L : K][T : K],
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which tells us in light of (1) that

[T L : K] = [L : K][T : K],

i.e., T and L are linearly disjoint over K.
This means that T enjoys the properties (i)-(iii) of Lemma 3.8 if and only if it is

maximal among overfields of K that lie in F and are linearly disjoint with L over
K.

Remark 3.11. Let us apply Lemma 3.8 and Remark 3.9 to L = K(Xλ) and choose
as F ⊂ Ksep any finite Galois extension of K that contains both K(Xλ) and FX,K ;
in particular, all endomorphisms of X are defined over F . We have

Gal(L/K) = Gal(K(Xλ)/K) = G̃λ,X,K .

Clearly, ρ̄λ,X,K factors through Gal(K)/Gal(F ) = Gal(F/K), and for each overfield
K ′ ⊂ F of K the image

G̃λ,X,K′ = ρ̄λ,X,K(Gal(K ′))

coincides with the image of

Gal(F/K ′) → Gal(K(Xλ)/K
′) = G̃λ,X,K′ ⊂ G̃λ,X,K ⊂ Autk(λ)(Xλ).

Now if we take as K ′ a field K that enjoys the properties (i)-(iii) of Lemma 3.8 then

G̃λ,X,K = G̃λ,X,K ⊂ Autk(λ)(Xλ)

and the surjective group homomorphism

φK : Gal(F/K) → Gal(L/K) = G̃λ,X,K

is a minimal cover. In particular,

EndG̃λ,X,K
(Xλ) = EndG̃λ,X,K

(Xλ).

In addition, if d > 1 is a positive integer such that G̃λ,X,K does not contain a proper
subgroup, whose index divides d then Gal(F/K) also does not contain a proper
subgroup, whose index divides d. Notice also that since all the endomorphisms of
X are defined over F , i,e., κX,K kills Gal(F ), there is the natural homomorphism

Gal(F/K) = Gal(K)/Gal(F ) → Aut(End(X, i))

induced by κX,K such that

EndK′(X, i) = End(X, i)Gal(F/K′)

for all fields K ′ with K ⊂ K ′ ⊂ F , including K ′ = K or K.

Lemma 3.12. ([44, Lemma 3.8 on p. 700]]) If the centralizer

EndG̃λ,X,K
(Xλ) = k(λ)

then EndK(X, i) = i(O).

Since the natural Q-algebra homomorphisms

O ⊗Q → E, i(O)⊗Q → i(E)

are obvious isomorphisms, Lemma 3.12 implies the following assertion.



10 YURI G. ZARHIN

Corollary 3.13. If the centralizer

EndG̃λ,X,K
(Xλ) = k(λ)

then End0K(X, i) = i(E).

Theorem 3.14. Let us assume that

EndG̃λ,X,K
(Xλ) = k(λ).

Suppose that G̃λ,X,K does not contain a proper subgroup, whose index divides dX,E.
Then:

(i) End0(X) is a simple Q-algebra;

(ii) i(E) contains CX , i.e., the center i(E)CX of End0(X, i) coincides with
i(E);

(iii) End0(X, i) is a central simple i(E)-algebra.

We prove Theorem 3.14 in Section 5.

4. Semisimple subalgebras of semisimple algebras

This section contains auxiliary results about semisimple algebras over fields that
will be used in the proof of Theorems 3.2, 3.3 and 3.4 in Section 5. All associa-
tive algebras, subalgebras and rings are assumed to have 1. Let k be a field, A a
finite-dimensional central simple k-algebra. We write End(A) for the ring of en-
domorphisms of the additive abelian group A and Endk(A) for the k-algebra of
endomorphisms of the k-vector space A. We have

k · idA ⊂ Endk(A) ⊂ End(A)

where idA is the identity endomorphism of A. One may view Endk(A) as the
centralizer of k · idA in End(A). We write Aopp for the opposite algebra of A; it
is well known that Aopp is also simple central over k and the natural k-algebra
homomorphism

A⊗k A
opp → Endk(A), u⊗ v 7→ {x 7→ uxv ∀ x ∈ A}

is an isomorphism of (central simple k-algebras). Further we will identify A⊗kA
opp

with Endk(A) via this isomorphism and

A = A⊗ 1, Aopp = 1⊗Aopp

with corresponding k-subalgebras of Endk(A). It is well known that the centralizer
of A ⊗ 1 (resp. of 1 ⊗ Aopp) in End(A) actually lies in Endk(A) (because both
subalgebras contain k ⊗ 1 = 1 ⊗ k = k · idA) and coincides with 1 ⊗ Aopp (resp.
with A⊗ 1).

Let B be a k-subalgebra of A. Let ZA(B) be the centralizer of B in A. Clearly,
ZA(B) is a k-subalgebra of A; in addition, B lies in the double centralizer of B, i.e.,
in the centralizer ZA(ZA(B)) of ZA(B). It is also clear that the center of B lies in
the center of ZA(B). The following assertion is well known in the case of simple B.

Theorem 4.1. Suppose that B is a semisimple k-algebra. Then ZA(B) is also a
semisimple k-algebra. In addition, the centralizer of ZA(B) in A coincides with B,
i.e., B coincides with its own double centralizer in A.

In particular, the centers of B and ZB(A) do coincide.
If, in addition, B is commutative then the center of ZA(B) coincides with B.
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Proof. The tensor product B ⊗k Aopp is a semisimple k-algebra, because Aopp is
central simple and B is simple. The algebra

ZA(B) = ZA(B)⊗ 1 ⊂ A⊗k A
opp = Endk(A)

coincides with the centralizer of the semisimple algebra

B ⊗k A
opp ⊂ A⊗k A

opp = Endk(A),

i.e., it is the endomorphism algebra of the semisimple B ⊗k Aopp-module A and
therefore is semisimple. By the Jacobson density theorem, the double centralizer
of

B ⊗k A
opp ⊂ A⊗k A

opp = Endk(A)

coincides with B ⊗k A
opp. On the other hand, if C is the double centralizer of B in

A then C contains B and C ⊗kA
opp lies in the double centralizer of B⊗k A

opp , i.e.,

C ⊗k A
opp ⊂ B ⊗opp

A
.

This implies that C ⊂ B and therefore C = B. �

Theorem 4.2. Let B be a simple k-subalgebra of A.
Then its centralizer ZA(B) is also a simple k-algebra. In addition,

dimk(B) · dimk(ZA(B)) = dimk(A).

Proof. This is a special case of Theorem 4.3.2 on p. 104 of [7] �

4.3. Iy is well known that dimk(A) is a square. Let us put

d = dA :=
√

dimk(A).

Let k0 be a subfield of k such that k/k0 is a finite algebraic separable field
extension. Let k̄0 be an algebraic closure of k0. We write Σk for the [k : k0]-
element set of k0-linear field embeddings k →֒ k̄0. It is well known that the canonical
homomorphism of semisimple commutative k̄0-algebras

k ⊗k0 k̄0 → ⊕σ∈Σk
k ⊗k,σ k̄0

is an isomorphism. Notice also that each k⊗k,σ k̄0 is canonically isomorphic to k̄0.
This implies easily that the canonical homomorphism of semisimple k̄0-algebras

A⊗k0 k̄0 → ⊕σ∈Σk
A⊗k,σ k̄0

is an isomorphism. In addition, each A⊗k,σ k̄0 is isomorphic to the matrix algebra
Md(k̄0) of size d over k̄0. This implies that A⊗k0 k̄0 is isomorphic to a direct sum
of [k : k0] copies of Md(k̄0).

Remark 4.4. Suppose that char(k0) = 0 and provide A with the structure of the
(reductive) k0-Lie algebra, defining

[u, v] = uv − vu ∀u, v ∈ A.

Then [k : k0]dA is the rank rk(A/k0) of the reductive k0-Lie algebra A. Indeed, the
rank of the k0-Lie algebra A coincides with the rank of the k̄0-Lie algebra A⊗k0 k̄0
while the latter equals [k : k0] times the rank of Md(k̄0). It remains to recall that
the rank of Md(k̄0) over k̄0 equals d = dA.
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Theorem 4.5. Let E be a subfield of A such that E ⊃ k0. (In particular, A and
E have the same multiplicative identity 1.) Let kE ⊂ A be the image of the natural
k-algebra homomorphism

E ⊗k0 k → A, u⊗ c 7→ uc = cu ∀u ∈ E , c ∈ k.

and ZA(E) ⊂ A the centralizer of E in A.
Then E , kE and ZA(E) enjoy the following properties.

(0) The degree [E : k0] divides rk(A/k0) = [k : k0]dA. In addition, if kE is a
field then [kE : k0] divides [k : k0]dA, the degree [kE : k] divides dA and
[kE : E ] divides [k : k0]dA/[E : k0].

(i) kE is a commutative semisimple k-algebra.
(ii) ZA(E) is a semisimple k-algebra that coincides with the centralizer of kE

in A.
(iii) The center of ZA(E) coincides with kE. The centralizer of ZA(E) in A

coincides with kE.
(iv) ZA(E) is a simple k-algebra if and only if kE is a field. (E.g., if E contains

k.)
(v) If char(k0) = 0 then

dimE(ZA(E)) ≤

(

dA[k : k0]

[E : k0]

)2

.

(vi) If char(k0) = 0 then the equality

dimE(ZA(E)) =

(

dA[k : k0]

[E : k0]

)2

holds if and only if E contains k0.

Example 4.6. If E = k then [E : k0] = [k : k0] and ZA(E) = A. Then

dimk(ZA(E)) = d2A =

(

dA[k : k0]

[k : k0]

)2

=

(

dA[k : k0]

[E : k0]

)2

.

Remark 4.7. If char(k0) = 0 then the ranks of the k0-Lie algebra A and its
subalgebra ZA(E) coincide. Indeed, it suffices to check that ZA(E) contains a
Cartan subalgebra of A. In order to do that, notice that E/k0 is a finite separable
field extension and therefore there is u ∈ E that generates E over k0. Clearly, u is
semisimple and the centralizer of u in A coincides with the centralizer of E , i.e., with
ZA(E). Since u is semisimple, there is a Cartan subalgebra h of A that contains u.
Since h is commutative, it commutes with its own element u and therefore lies in
ZA(E). This ends the proof.

Proof of Theorem 4.5. Since k/k0 is separable, E ⊗k0 k is isomorphic to a direct
sum of fields. The same is true for its quotient kE , which proves (i). Since k is
is the center of A and kE is generated by k and E , the centralizer of semisimple
k-akgebra kE coincides with the centralizer of E . Now (ii) follows from Theorem
4.1. Since kE is commutative, (iii) follows from (ii), thanks to Theorem 4.1, and
(iv) follows from (ii) and (iii).

Let us prove (v) and (vi). Recall that ZA(E) = ZA(kE).
First, assume that kE is a field. Then

[kE : k] · [k : k0] = [kE : k0] = [kE : E ] · [E : k0], [E : k0] ≤ [kE : k0]
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and therefore

(2)
[kE : E ]

[kE : k0]2
=

1

[E : k0][kE : k0]
≤

1

[E : k0]2
;

the equality holds if and only if [kE : k0] = [E : k0], i.e., kE = E , which means that
E contains k.

By Theorem 4.2,

dimk(ZA(E)) = dimk(ZA(kE)) =
dimk(A)

[kE : k]
=

d2A
[kE : k]

.

This implies that the kE-dimension of ZA(E) is given by the formula

dimkE (ZA(E)) =
dimkE(ZA(E))

[kE : k]
=

d2A
[kE : k][kE : k]

=
d2A

[kE : k]2
.

It follows that the E-dimension of ZA(E) is given by the formula

dimE(ZA(E)) = [kE : E ] · dimkE (ZA(E)) =
[kE : E ]

[kE : k]2
· d2A =

[kE : E ]

[kE : k]2[k : k0]2
· [k : k0]

2d2A =
[kE : E ]

[kE : k0]2
· ([k : k0]dA)

2 ≤

1

[E : k0]2
· ([k : k0]dA)

2;

in light of (2), the equality holds if and only if E contains k.
Now suppose that kE is not a field and let us split semisimple kE into a finite

direct sum

kE = ⊕j∈JFj

of fields Fj . Here the set of indices J is finite nonempty but not a singleton. We
write ej for the idenity element of Fj ⊂ kE . Clearly,

(3) e2j = ej ,
∑

j∈J

ej = 1 ∈ A, ejej′ = 0 ∀j 6= j′.

The map

ij : E → Fj , u 7→ eju = ejuej

is a field embedding. Let us put

Aj = ejZA(E) = ejZA(E)ej ⊂ ZA(E) ⊂ A.

Clearly, Aj is a central simple Fj -algebra and

ZA(E) = ⊕j∈JAj .

The field embedding ij : E → Fj allows us to view Aj as E-algebra. Clearly,

dimE(ZA(E)) =
∑

j∈J

dimE(Aj).

Let us put

dj :=
√

dimFj
(Aj);

all dj are positive integers.
Applying Remark 4.3 to Fj (instead of k) and Aj (instead of A), we conclude

that the rank rk(Aj) of k0-Lie algebra Aj is [Fj : k0]dj . This implies that the rank
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of the reductive k0-Lie subalgebra ZA(E) of A is
∑

j∈J [Fj : k0]dj . Remarks 4.3 and
4.7 imply that

∑

j∈J

[Fj : k0]dj = [k : k0]dA.

Applying the already proven case of (v) to Fj (instead of k), Aj (instead of A) and
the field ij(E), we conclude that

dimE(Aj) = dimij(E)(Aj) ≤
([Fj : k0]dj)

2

[ij(E) : k0]2
=

([Fj : k0]dj)
2

[E : k0]2
.

This implies that

dimE(ZA(E)) =
∑

j∈J

dimE(Aj) ≤

∑

j∈J ([Fj : k0]dj)
2

[E : k0]2
.

Since J is not a singleton and all dj are positive,

∑

j∈J

([Fj : k0]dj)
2 <





∑

j∈J

[Fj : k0]dj





2

= (dA[k : k0])
2.

This implies that

dimE(ZA(E)) <
(dA[k : k0])

2

[E : k0]2
,

which ends the proof of (v) and (vi).
It remains to prove (0). First assume that kE is a field. Then ZA(E) is a central

simple kE-algebra. Then the rank of k0-Lie algebra ZA(E) equals [kE : k0] ·d where
the positive integer

d :=
√

dimkE(ZA(E)).

By Remark 4.7, the ranks of A and ZA(E) do coincide and therefore the rank of
k0-Lie algebra A is divisible by [kE : k0]. This means that [k : k0]dA is divisible
by [kE : k0], [k : k0]dA is divisible by [kE : k0]. Since [kE : k0] = [kE : E ][E : k0],
[kE : k] divides ]dA and [kE : E ] divides [k : k0]dA/[E : k0]. In addition, [kE : E ]
divides [k : k0]dA/[E : k0].

Now let us do the general case when (in the notation above) kE is a direct sum
⊕j∈JFj of overfields Fj ⊃ E and ZA(E) is a direct sum ⊕j∈JAj of central simple
Fj-algebras Aj . Then the rank of k0-Lie algebra Aj equals [Fj : k0] · dj where the
positive integer

dj =
√

dimFj
(Aj).

Since [Fj : k0] is divisible by [E : k0], the rank of Aj is also divisible by [E : k0].
Since the rank of ZA(E) is the sum of the ranks of Aj , it is also divisible by [E : k0].
By Remark 4.7, the ranks of A and ZA(E) do coincide and therefore the rank of
k0-Lie algebra A is divisible by [E : k0]. �

4.8. We write Autk0(A) for the automorphism group of the (associative) k0-algebra
A. Let G be a group and

ρ : G→ Autk0(A)

be a group homomorphism. Clearly, k0 lies in the subalgebra AG of G-invariants
of A. It is also clear that G leaves stable the center k, i.e., ρ induces the group
homomorphism

ρk : G→ Aut(k/k0)
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where Aut(k/k0) is the (finite) automorphism group of the field extension k/k0.

Theorem 4.9. Suppose that E is a field that lies in AG and contains k0. Then E
and ZA(E) enjoy the following properties.

(i) The field E is a finite algebraic extension of k0 and the degree [E : k0] divides
rk(A/k0) = [k : k0]dA.

(ii) The subalgebras kE and ZA(E) of A are G-stable.
(iii) Let us assume that (in the notation above) kE is a finite direct sum ⊕j∈JFj

of overfields Fj ⊃ E and ZA(E) is a finite direct sum ⊕j∈JAj of central
simple Fj-algebras Aj = ejZA(E). Then there is a group homomorphism

ρJ : G→ Perm(J)

of G into the group Perm(J) of permutations of J such that if ρJ(j) = j′

then
ρ(g)(Fj) = Fj′ , ρ(g)(Aj) = Aj′ ∀g ∈ G.

(iiibis) If ZA(E)
G = E then the action of G on J is transitive; in particular, for

each j, j′ ∈ J there is a k0-linear field isomorphism Fj
∼= Fj′ that extends

to an isomorphism of k0-algebras Aj
∼= Aj′ . In particular, positive integers

eE = [Fj : E ], dE =
√

dimFj
(Aj)

do not depend on a choice of j and

[k : k0]dA = |J |eEdE [E : k0].

Here |J | is the cardinality of J .
(iv) If ZA(E)

G = E and G does not contain a proper subgroup with finite index
dividing ([k : k0]dA)/[E : k0] then J is a singleton, kE is a field and ZA(E)
is a central simple kE-algebra.

(v) If ZA(E)
G = E and kE is a field then kE/E is a finite Galois field extension,

whose degree [kE : E ] divides ([k : k0]dA)/[E : k0]. In addition, ρk induces
the surjective group homomorphism

ρkE : G։ Gal(kE/E).

In particular, if G does not admit a proper normal subgroup with finite
index dividing ([k : k0]dA)/[E : k0] then kE = E, i.e., E contains k.

Proof. (i) follows from the inclusion k0 ⊂ E and Theorem 4.5(0).
(ii) is obvious.
Let us prove (iii). The set {Aj | j ∈ J} is the set of (nonzero) minimal two-

sided ideals of A. Therefore G permutes elements of this set, i.e, there is the group
homomorphism

ρJ : G→ Perm(J)

of G into the group Perm(J) of permutations of J such that if g ∈ G and ρJ(g)(j) =
j′ then ρ(g)(Aj) = Aj′ . Since Fj (resp. Fj′ ) is the center of Aj (resp. of Aj′ ) with
identity element ej (resp. ej′),

(4) ρ(g)(Fj) = Fj′ , ρ(g)(ej) = ej′ .

Let us prove (iiibis). We need to check the transitivity of the G-action on J .
Notice that for each nonempty G-invariant subset T ⊂ J the sum eT =

∑

j∈T ej is

a nonzero element of A that is G-invariant, thanks to(4). This implies that eT is a
nonzero element of ZA(E)

G = E . If the action onf G on J is not transitive then J
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is not a singleton and there exist two disjoint G-orbits T1, T2 ⊂ J . It follows from
(3) that eT1eT2 = 0. Since both factors are nonzero elements of the field E , we get
a desired contradiction that proves the transitivity. This proves (iiibis).

(iv) follows readily from the transitivity of the G-action on J .
Let us prove (v). So, kE be a field. Then kE/E is a finite algebraic field extension

and it follows from Theorem 4.5(0) that [kE : E ] divides ([k : k0]dA)/[E : k0].
Clearly, kE is G-stable and the subfield (kE)G of its G-invariants coincides with E .
This gives us the natural group homomorphism

ρkE : G→ Aut(kE/E),

whose image H := ρkE (G) ⊂ Aut(kE/E) is a finite group (whose order does not
exceed [kE : E ]. Since the subfield of H-invariants

(kE)H = (kE)G = E ,

the order of H coincides with [kE : E ], the field extension kE/E is Galois with
Galois group H . Since the group homomorphism ρkE : G → H is surjective, its
kernel ker(ρkE ) is a normal subgroup in G of index [kE : E ]. This implies that
ker(ρkE) is a normal subgroup of G, whose index divides ([k : k0]dA)/[E : k0].
Therefore, if G does not admit a proper normal subgroup with finite index dividing
([k : k0]dA)/[E : k0] then G = ker(ρkE) and therefore [kE : E ] = 1, i.e., kE = E ,
which means that E contains k.

�

4.10. In this subsection we assume that A is a semisimple finite-dimensional algebra
over a field k0 of characteristic zero. Then A splits into a finite direct sum

A = ⊕s∈I(A)As

of simple k0-algebras As. (Here the finite nonempty set I(A) is identified with the
set of (nonzero) minimal two-sided ideals in A.)

Example 4.11. If k0 = Q and A = End0(X) then I(End0(X)) = I(X).

Let G be a group and
ρ : G→ Autk0(A)

be a group homomorphism. Clearly, ρ induces the action of G on I(A) such that

ρ(g)As = Ags ∀g ∈ G, s ∈ I(A).

Let E be a subfield of A that contains k0 and lies in the subalgebra AG of G-
invariants. Then the centralizer ZA(E) of E in A is G-stable.

Lemma 4.12. Let us assume that the subalgebra ZA(E)
G of G-invariants of ZA(E)

is a field. Then the action of G on I(A) is transitive. In particular, simple k0-
algebras As and At are isomorphic for each pair s, t ∈ I(A).

Proof. We use the same idea as in the proof of Theorem 4.9(iii). Let

es ∈ At ⊂
∑

t∈I(A)

At = A

be the identity element of As. Clearly, es lies in the center of A and

ρ(g)es = egs ∀g ∈ G, s ∈ I(A).

It is also clear that eset = 0 for distinct elements s and t of I(A). Notice that for
each nonempty G-invariant subset T ⊂ I(A) the sum eT =

∑

t∈T et is a nonzero
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central element of A that is G-invariant. This implies that eT is a nonzero ele-
ment of ZA(E)G. If the action on G on I(A) is not transitive then J there exist
two disjoint G-orbits T1, T2 ⊂ I(A). Clearly, eT1eT2 = 0. Since both factors are
nonzero elements of the field ZA(E)G, we get a desired contradiction that proves
the transitivity. �

Corollary 4.13. We keep the notation and assumptions of Lemma 4.12. Suppose
that Ka is an algebraically closed field of characteristic 0 that contains k0 and we
are given a nonempty family {Mτ | τ ∈ Σ} of finite-dimensional Ka-vector spaces
Mτ that enjoy the following properties.

(i) Not all Mτ = {0}.
(ii) For each τ ∈ Σ we are given a homomorphism of k0-algebras

ZA(E) → EndKa
(Mτ )

that sends 1 to the identity automorphism of Mτ .

If the largest common divisor of all dimKa
(Mτ ) is 1 then ZA(E) is a finite-

dimensional semisimple commutative E-algebra, which is either a field or isomor-
phic to a direct sum of finitely many copies of the same field.

Proof. Applying Lemma 4.12 to the semisimple E-algebra ZA(E) (instead of the
k0-algebra A), we obtain that ZA(E) is isomorphic to a direct sum of copies of a
certain finite-dimensional simple E-algebra say, B. The center F of B is an overfield
of E and the field extension F/E is finite algebraic. As usual,

dB =
√

dimF (B)

is a positive integer. This implies that the tensor product B ⊗k0 Ka is isomorphic
as a Ka-algebra to a direct sum of [E : k0] copies of the matrix algebra MdB

(Ka)
of size dB over Ka. This implies that ZAE) ⊗k0 Ka is isomorphic as a Ka-algebra
to a direct sum of copies of MdB

(Ka). On the other hand, each Mτ carries the
natural structure of ZAE)⊗k0 Ka-module. Since the Ka-dimension of every finite-
dimensional MdB

(Ka)-module is divisible by dB, all dimKa
(Mτ ) are divisible by

dB. This implies that dB = 1, i.e., B = F is a field. �

5. Abelian varieties and centralizers

In this section we are going to prove Theorems 3.2, 3.3 and 3.4. We will use
Theorem 4.5 in order to prove Theorem 5.1 below that is a special case of these
Theorems. Later we deduce from Theorem 5.1 the general case.

Theorem 5.1. Suppose that Y is a positive-dimensional abelian variety over Ka

that enjoys the following equivalent properties.

(a) End0(Y ) is a simple Q-algebra.
(b) The center CY of End0(Y ) is a number field and End0(Y ) is a central

simple algebra over CY .
(c) There exists a simple abelian variety Z over Ka such that Y is isogenous

over Ka to a self-product of Z.

Let E be a number field and i : E →֒ End0(Y ) be a Q-algebra embedding. Then the

E-algebra End0(Y, i) enjoys the following properties.

(i) End0(Y, i) is semisimple.
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(ii) End0(Y, i) is simple if and only if i(E)CY is a field 2 . (E.g., CY ⊂ E or
E ⊂ CY or number fields E and CY are linearly disjoint over Q.) If this is
the case then End0(Y, i) is a central simple algebra over the field i(E)CY .

(iii)

dimE(End
0(Y, i)) ≤

(

2dim(Y )

[E : Q]

)2

.

(iv) The equality

dimE(End
0(Y, i)) =

(

2dim(Y )

[E : Q]

)2

holds if and only if

dimCY
(End0(Y )) =

(

2dim(Y )

[CY : Q]

)2

and E contains CY .

Remark 5.2. (i) Suppose that Y satisfies the equivalent conditions (a),(b),(c)
of Theorem 5.1. This means that there are a simple abelian variety Z over
Ka and a positive integer r such that Y is isogenous to Zr over Ka. In ad-
dition, End0(Z) is a central division CY -algebra and End0(Y ) is isomorphic

to the matrix algebra Mr(End
0(Z)) of size r over End0(Z); in particular,

fields CY and CZ are isomorphic. We have

dim(Y ) = r · dim(Z), dimCY
(End0(Y )) = r2dimCZ

(End0(Z)).

Recall that the number

d(Z) :=

√

dimCZ
(End0(Z))

is a positive integer.
It follows from Albert’s classification [14, Sect. 21] that d(Z) · [CZ : Q]

divides 2dim(Z). This implies that

r · d(Z) · [CZ : Q] =

√

dimCY
(End0(Y )) · [CZ : Q],

which divides 2r · dim(Z) = 2dim(Y ). Now if we put

k0 = Q, k = CY , A = End0(Y )

then

[k : k0] = [CY : Q] = [CZ : Q], dA =

√

dimCY
(End0(Y )) = r · d(Z)

and

[k : k0]dA = [CY : Q]r · d(Z) = [CZ : Q]r · d(Z),

which divides r · 2dim(Z) = 2dim(Y ). In particular,

[k : k0]dA ≤ 2dim(Y );

the equality holds if and only if

d(Z) · [CZ : Q] = 2dim(Z).

2Last sentences of [38, Remark 4.1] and [44, Remark 3.1] wrongly assert the simplicity of
End0(Y, i) without assuming that i(E)CY is a field. The mistake was caused by improper use of
[7, Theorem 4.3.2 on p. 104].
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Notice that this equality is equivalent to

dimCZ
(End0(Z)) =

(

2dim(Z)

[CZ : Q]

)2

,

which, in turn, is equivalent to

(5) dimCY
(End0(Y )) =

(

2dim(Y )

[CY : Q]

)2

.

(ii) Now assume that (5) holds. We have

r · d(Z) =
2dim(Y )

[CY : Q]
.

Let E be a subfield of End0(Y ) that contains CY and i : E →֒ End0(Y )
be the inclusion map. It follows from Theorems 4.1 and 4.2 applied to
E = i(E) that End0(Y, i) is a central simple E-algebra and

dimCY
(End0(Y )) = [E : CY ] · dimCY

(End0(Y, i)).

This implies that

dimE(End
0(Y, i)) =

dimCY
(End0(Y, i))

[E : CY ]
=

dimCY
(End0(Y ))

[E : CY ]2
=

(2dim(Y ))2

[CY : Q]2[E : CY ]2
=

(

2dim(Y )

[E : Q]

)2

.

(iii) For example, let F be a (maximal) subfield of End0(Z) such that

CZ ⊂ F, [F : CZ ] = d(Z)

and let L/CZ be a degree r field extension that is linearly disjoint with F .
Then E := F ⊗CZ

L is an overfield of CZ and

[E : Q] = [E : CZ ] · [CZ : Q] = [F : CZ ] · [L : CZ ] · [CZ : Q] = r · d(Z) · [CZ : Q] =

2dim(Y )

[CY : Q]
· [CY : Q] = 2dim(Y ).

Let us fix an embedding

i0 : L →֒ Mr(CY ) ⊂ Mr(End
0(Z))

that sends 1 to 1. Then

E = F ⊗CZ
L→ Mr(End

0(Z)), f ⊗ l 7→ f · i0(l)

is a CZ -algebra homomorphism that sends 1 to 1. Since E is a field, this
homomorphism is an embedding. It follows that Mr(End

0(Z)) contains

a number field of degree 2dim(Y ). Since Mr(End
0(Z)) ∼= End0(Y ), the

algebra End0(Y ) contains a number field of degree 2dim(Y ), i.e., Y is an
abelian variety of CM type over Ka.

Proof of Theorem 5.1. Assertions (i) and (ii) follow from Theorems 4.2 and 4.1.
In order to prove (iii) and (iv) let us put (as in Remark 5.2(i))

k0 = Q, k = CY , A = End0(Y ).

Then

[k : k0] = [CY : Q] = [CZ : Q], dA =

√

dimCY
(End0(Y )) = r · d(Z)
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and according to Remark 5.2(i)

[k : k0]dA ≤ 2dim(Y ).

Now the desired result follows from Theorem 4.5(v,vi). �

5.3. Let X be an arbitrary positive-dimensional abelian variety over Ka. In this
subsection we use the notation of Subsection 2.1.

Let E be a number field and i : E →֒ End0(X) be a Q-algebra embedding that

sends 1 to 1X . Then the E-algebra End0(X, i) enjoys the following properties. Let
s ∈ I(X) and

prs : End
0(X) =

∑

s∈I(X)

Ds ։ Ds

be the corresponding projection map. Clearly, prsi(E) ∼= E. We write Ds,E for the

centralizer of prsi(E) inDs. One may easily check that End0(X, i) =
∏

s∈I(X)Ds,E .

We write is for the composition prsi : E →֒ End0(X) ։ Ds = End0(Xs). Clearly,

is(1) = es = 1Xs
, Ds,E = End0(Xs, is), End

0(X, i) = ⊕s∈I(X)End
0(Xs, is).

In particular, the ratio

dXs,E =
2dim(Xs)

[E : Q]

is a positive integer, i.e., [E : Q] divides 2dim(Xs).

Theorem 5.4. Suppose that X is a positive-dimensional abelian variety over Ka.
Let E be a number field and i : E →֒ End0(X) be a Q-algebra embedding that

sends 1 to 1X . Then the E-algebra End0(X, i) enjoys the following properties.

(i) End0(X, i) is a semisimple.

(ii) End0(X, i) is simple if and only if CX is a field and i(E)CX is a field. If
this is the case then End0(X, i) is a central simple algebra over the field
i(E)CX .

(iii)

dimE(End
0(X, i)) ≤

(

2dim(X)

[E : Q]

)2

.

(iv) the equality

dimE(End
0(X, i)) =

(

2dim(X)

[E : Q]

)2

holds if and only if CX is a field,

dimCX
(End0(X)) =

(

2dim(X)

[CX : Q]

)2

and E contains CX .

Proof. We use the notation of Section 5.3. Applying Theorem 5.1(i) to each (Xs, is),
we obtain that End0(Xs, is) are semisimple E-algebras. This implies that their

direct sum End0(X, i) is also semisimple; if it simple then I(X) is a singleton, i.e.
CX is a field. This proves (i) while (ii) follows readily from Theorem 5.1(ii).
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Let us prove (iii) and (iv). If I is a singleton then the desired result is contained
in Theorem 5.1. Now assume that I is not a singleton. Applying Theorem 5.1(iii)
to each (Xs, is), we obtain that

dimE(End
0(Xs, is)) ≤

(2dim(Xs))
2

[E : Q]2
,

dimE(End
0(X, i)) =

∑

s∈I

dimE(End
0(Xs, is)) ≤

∑

s∈I

(2dim(Xs))
2

[E : Q]2
.

Since I is not a singleton and all dim(Xs) are positive,

∑

s∈I

(2dim(Xs))
2

[E : Q]2
<

(
∑

s∈I
2dim(Xs))

2

[E : Q]2
=

(

2dim(X)

[E : Q]

)2

.

This ends the proof. �

Proof of Theorems 3.2, 3.3 and 3.4. Theorems 5.1 and 5.4 combined with Remark
5.2 imply readily Theorems 3.2, 3.3 and 3.4. �

Proof of Theorem 3.14. Let us choose fields F and K ⊂ F as in Remark 3.11. Then

k(λ) = EndG̃λ,X,K
(Xλ) = EndG̃λ,X,K

(Xλ).

It follows from Lemma 3.12 that EndK(X, i) = i(O) and therefore End0K(X, i) =
i(E). By Remark 3.11, Gal(F/K) acts on End(X, i) in such a way that

End(X, i)Gal(F/K) = EndK(X, i) = i(O).

Extending the action of Gal(F/K) by Q-linearity on End(X, i) ⊗ Q, we get the
group homomorphism

Gal(F/K) → AutQ(End(X, i)⊗Q) = AutQ(End
0(X, i))

such that the subalgebra of Gal(F/K)-invariants

(End0(X, i))Gal(F/K) = (End(X, i))Gal(F/K) ⊗Q = i(O)⊗Q = i(E)

is a field. Applying Example 4.11 and Lemma 4.12 to k0 = Q, G = Gal(F/K) and
A = End0(X), we conclude that Gal(F/K) acts transitively on I(X). This implies
that all the Xs’s are Galois-conjugate abelian subvarieties of X . In particular,
dim(Xs) does not depend on s and

dim(X) = |I(X)| · dim(Xs).

On the other hand, the results of Section 5.3 tell us that [E : Q] divides 2dim(Xs).
This implies that 2dim(X) is divisible by |I(X)|[E : Q] and therefore |I(X)| divides
the ratio

2dim(X)

[E : Q]
= dX,E .

The transitivity of the action of Gal(F/K) on I(X) implies that the stabilizer
Gal(F/K)s of any s is a subgroup in Gal(F/K), whose index divides dX,E . However,

the conditions of Theorem 3.14 imposed on G̃λ,X,K combined with Remark 3.11
imply that such a subgroup must coincide with the whole group Gal(F/K), i.e.,

I(X) is a singleton and End0(X) is a simple Q-algebra. In particular, the center
CX is a field.
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By Remark 5.2(i) applied to Y = X , the product [CX : Q]dEnd0(X) divides
2dim(Y ). Applying Theorem 4.9(iiibis and iv) to

k0 = Q, k = CX ,A = End0(X), G = Gal(F/K)

E = i(E) and its centralizer ZA(i(E)) = End0(X, i), we conclude that End0(X, i) is
a central simple i(E)-algebra provided that the only subgroup of Gal(F/K), whose
index divides M = [CX : Q]dEnd0(X)/[i(E) : Q] is the whole Gal(F/K). However,
M obviously divides dX,E and we have already seen that the only subgroup of
Gal(F/K), whose index divides dX,E is the whole Gal(F/K). This ends the proof.

�

6. Tangent spaces

The aim of this section is to obtain an additional information about endomor-
phiam algebras of abelian varieties X with multiplications by a number field E,
using the action of E on the Lie algebra of X .

Throughout this section K is a field of characteristic 0.

6.1. Let E be a number field and ΣE be the set of field embeddings τ : E →֒ Ka.
To each τ ∈ ΣK corresponds the natural surjective Ka-algebra homomorphism

πτ : E ⊗Q Ka ։ E ⊗E,τ Ka =: Ka,τ = Ka.

Taking the direct sum of all πτ ’s, we get the canonical isomorphiam of Ka-algebras

Π : E ⊗Q Ka
∼= ⊕τ∈ΣE

Ka,τ .

Remark 6.2. Suppose that τ(E) ⊂ K for all τ ∈ ΣK . (E.g., this condition holds
if E is normal over Q and K contains a subfield isomorphic to E.) Then to each
τ ∈ ΣK corresponds the natural surjective K-algebra homomorphism

πτ,K : E ⊗Q K ։ E ⊗E,τ K =: Kτ = K.

Taking the direct sum of all πτ,K ’s, we get the canonical isomorphism of K-algebras

ΠK : E ⊗Q K ∼= ⊕τ∈ΣE
Kτ .

If M is any E ⊗Q Ka-module then we write for each τ ∈ ΣK

Mτ = {x ∈ M | u(x) = τ(u)x ∀u ∈ E = E ⊗ 1 ⊂ E ⊗Q Ka}.

Clearly, Mτ = Ka,τM is an E ⊗Q Ka-submodule of M and

M = ⊕τ∈ΣK
Mτ .

In particular, if M viewed as a vector space over Ka = 1⊗Ka has finite dimension
then

dimKa
(M) =

∑

τ∈ΣK

dimKa
(Mτ ).

6.3. Let VK be a smooth absolutely irreducible quasiprojective variety over K and
V = V ×K Ka the correspomding variety over the algebraic closure Ka of K. The
Galois group Gal(K) acts naturally on VK(Ka) = V (Ka); the set of fixed points
of this action coincides with VK(K). Further we identify VK(Ka) with its bijective
image in V (Ka).
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Let P be a K-point of VK , which we also view as Ka-point of V . We write tP (V )
for the tangent Ka-vector space to V at P and tP (VK) for the tangent K-vector
space to VK at P . The natural Ka-linear map [6, Remark 6.3(iii) on p. 147]

tP (V ) → tP (VK)⊗K Ka

is an isomorphism of Ka-vector spaces [6, Remark 6.12(iii) on p. 152]. The Galois
group Gal(K) acts by semi-linear automorphisms on tP (V ) and the corresponding
K-vector subspace of Gal(K)-invariants

tP (V )Gal(K) = tP (VK)⊗ 1 = tP (VK).

Let Z be a smooth closed Ka-subvariety of V such that P ∈ Z(Ka). Then the
induced map of the Ka-vector tangent spaces tP (Z) → tP (V ) is an embedding and
we identify tP (Z) with its image in tP (V ). For each σ ∈ Gal(K) the Ka-vector
subspace

σ(tP (Z)) ⊂ tP (V )

coincides with the tangent space to the closed smooth subvariety σZ ⊂ V at P ∈
(σZ)(Ka) = σ(Z(Ka)). (This assertion follows readily from the classical explicit
description of the tangent space [6, Example 6.5 on p. 148].)

6.4. Let X be a positive-dimensional abelian variety over Ka that is defined over
K. This means that there exists an abelian scheme XK over K such that X =
XK ×K Ka. Let

o ∈ XK(K) ⊂ XK(Ka) = X(Ka)

be the zero of the group law on XK . Let us put

Lie(X) = to(X), LieK(X) = to(XK).

By definition, Lie(X) (resp. LieK(X)) is a dim(X)-dimensional vector space over
Ka (resp. over K) and there is the natural identification of Ka-vector spaces

Lie(X) = LieK(X)⊗K Ka.

If Z ⊂ Ka is an abelian Ka-subvariety of X then Z(Ka) contains o and we consider
the Ka-vector subspace.

Lie(Z) := to(Z) ⊂ to(X) = Lie(X).

For each σ ∈ Gal(K) we have the abelian Ka-subvariety σZ and

Lie(σZ) = σ(Lie(Z)) ⊂ LieK(X)⊗K Ka = Lie(X).

By functoriality, Lie(X) (resp. LieK(X)) carries the natural structure of End(X)⊗

Ka = End0(X) ⊗Q Ka-module (resp. of EndK(XK) ⊗ K = End0K(XK) ⊗Q K-
module.)

Let
i : E →֒ End0(X)

be a Q-algebra embedding that sends 1 to 1X .
In particular, Lie(X) becomes the E ⊗Q Ka-module. Let us consider the Ka-

vector subspace

Lie(X)τ = {z ∈ Lie(X) | i(e)z = τ(e)z ∀e ∈ E} ⊂ Lie(X), nτ (X, i) = dimKa
(Lie(X)τ ).

Clearly,

Lie(X) = ⊕τ∈ΣE
Lie(X)τ , dim(X) = dimKa

(Lie(X)) =
∑

τ∈ΣE

nτ (X, i).
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We write nX,i for the greatest common divisor of all nτ (X, i). Clearly, nX,i is a

positive integer dividing dim(X). The subspace Lie(X)τ is End0(X, i)-invariant
and carries the natural structure of End0(X, i)⊗Q Ka-module.

From now on we assume that

i(E) ⊂ End0K(XK).

Theorem 6.5. Suppose that char(K) = 0. If End0K(X, i) is a number field and

nX,i = 1 then End0(X, i) is a semisimple commutative E-algebra and all its simple
components are mutually isomorphic number fields.

Proof. Let us put

k0 = Q,A = End0(X), G = Gal(K),Σ = ΣK ,Mτ = Lie(X)τ .

Applying Lemma 4.12 and Corollary 4.13 to E = i(E), and

ZA(E) = End0(X, i), ZA(E)
G = End0K(X, i),

we obtain the desired result. �

Corollary 6.6. Suppose that

char(K) = 0, i(O) ⊂ EndK(X), nX,i = 1.

Let us assume that there exists a maximal ideal λ of O such that

EndG̃λ,X,K
(Xλ) = k(λ)

then End0(X, i) is a semisimple commutative E-algebra and all its simple compo-
nents are mutually isomorphic number fields.

Proof. By Corollary 3.13, the condition on the centralizer implies that End0K(X, i) =
i(E) ∼= E is a number field. Now the result follows from Theorem 6.5. �

6.7. We continue our study of certain subspaces of Lie(X). If τ ∈ ΣE and σ ∈
Gal(K) then their composition

στ : E →֒ Ka

also lies in ΣE and

σ(Lie(X)τ ) = Lie(X)στ ⊂ Lie(X).

In particular,

nτ (X, i) = dimKa
(Lie(X)τ ) = dimKa

(Lie(X)στ ) = nστ (X, i),

i.e.,

nτ (X, i) = nστ (X, i) ∀τ ∈ ΣE , σ ∈ Gal(K).

In addition, suppose that Z ⊂ X is an abelian Ka-subvariety of X such Lie(Z)
is E-invariant (i.e., is a E ⊗Q Ka-submodule of Lie(X)). Then Lie(σZ) is also
E-invariant and

σ(Lie(Z)τ ) = Lie(σZ)στ .

In particular, if τ(E) ⊂ K then στ = τ and therefore

σ(Lie(Z)τ ) = Lie(σZ)τ

and

dimKa
(Lie(σZ)τ ) = dimKa

(Lie(Z)τ ).
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Now we use the notation of Subsections 2.1 and 5.3. Recall thatXs ⊂ X is a positive
dimensional abelian Ka-subvariety of X for all s ∈ I(X). Since char(K) = 0, the
isogeny ΠX (see Lemma 2.2) induces an isomorphism of Ka-vector spaces

Lie(X) = ⊕s∈I(X)Lie(Xs)

while each subspace Lie(Xs) ⊂ Lie(X) is E-invariant and End0(X, i)-invariant in
light of results of Subsection 5.3. In addition, the action of E on Lie(Xs) ⊂ Lie(X)

induced by i coincides with the action of E induced by is : E →֒ End0(Xs). This
implies that

dimKa
(Lie(Xs)τ ) = nτ (Xs, is) ∀s ∈ I(X), τ ∈ ΣE .

It is also clear that

σ(Lie(Xs)) = Lie(σ(Xs)) = Lie(Xσ(s)) ∀σ ∈ Gal(K), s ∈ I(X).

So, if

(6) τ(E) ⊂ K ∀τ ∈ ΣE

and the action of Gal(K) on I(X) is transitive then dimKa
(Lie(Xs)τ ) does not

depend on a choice of s and

nτ (X, i) = dimKa
(Lie(X)τ ) = |I(X)|dimKa

(Lie(Xs)τ .

This implies that if (6) holds and the Galois action on I(X) is transitive then
nτ (X, i) is divisible by |I(X)| for all τ ∈ ΣE . It follows that nX,i is divisible by
|I(X)|.

Lemma 6.8. Suppose that char(K) = 0 and τ(E) ⊂ K for all τ ∈ ΣE. If

End0K(X, i) is a number field and nX,i = 1 then I(X) is a singleton, i.e., X = Xs,

CX is a number field and End0(X) is simple Q-algebra, which is a central simple
algebra over CX .

Proof. If End0K(X, i) is a number field then Gal(K) acts on I(X) transitively. By
results of Subsection 6.7, nX,i is divisible by |I(X)|. Since nX,i = 1, I(X) is a

singleton, i.e., X = Xs and End0(X) = End0(Xs) is a simple Q-algebra. �

Remark 6.9. Lemma 6.8 is a generalization of ([44, Th. 3.12(i)], [45, Th. 3.12(i)]).

Theorem 6.10. Suppose that

char(K) = 0, End0K(X, i) = i(E), nX,i = 1, τ(E) ⊂ K ∀ τ ∈ ΣE .

Then End0(X, i) is a number field containing E and the degree [End0(X, i) : i(E)]
divides dX,E .

Proof. Let us put k0 = Q. By Lemma 6.8, A := End0(X) is a central simple
algebra over the number field k := CX . Let us apply Theorem 4.9 to G = Gal(K),
the field E = i(E) and

ZA(E) = End0(X, i), ZA(E)G = End0K(X, i) = i(E).

By Theorem 6.5, End0(X, i) (in the notation of Theorem 4.9) is a direct sum of
fields

End0(X, i) = ⊕j∈JFj
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where all Fj ’s are mutually isomorphic number fields. By Theorem 4.9(iii, iiibis),
there is a transitive action

ρJ : Gal(K) → Perm(J)

of Gal(K) on J such that if ρJ (σ)j = j′ then σ(Fj) = Fj′ . Let ej ∈ Fj ∈ End0(X, i)
be the identity element of Fj . Clearly,

∑

j∈J

ej = 1 ∈ End0(X), e2j = e2j , ejej′ = 0 ∀j 6= j′.

This implies that the set {ej | j ∈ J} is Gal(K)-invariant and the action of Gal(K)
on this set is transitive. Let us put

Lie(X)(j) = ejLie(X) ⊂ Lie(X).

Clearly, each Lie(X)(j) is a E ⊗Q Ka-sumbodule of Lie(X) and

Lie(X) = ⊕j∈JLie(X)(j).

In addition, Gal(K) acts transitively on the set {Lie(X)(j) | j ∈ J}. Since τ(E) ⊂

K for each τ ∈ ΣE , dimKa
(Lie(X)

(j)
τ ) does not depend on a choice of j ∈ J . This

implies that

nτ (X, i) = dimKa
(Lie(X)τ ) = |J |dimKa

(Lie(X)(j)τ );

in particular, all nτ (X, i) are divisible by |J |. This implies that nX,i is divisible by

|J |. Since nX,i = 1, J is a singleton, i.e., End0(X, i) = Fj is a (number) field.
It remains to prove that [Fj : E] divides dX,E . Indeed, since Fj is a subfield of

End0(X), its degree [Fj : Q] divides 2dim(X) and therefore

[Fj : E] =
[Fj : Q]

[E : Q]

divides
2dim(X)

[E : Q]
= dX,E .

�

Theorem 6.11. Suppose that

char(K) = 0, i(O) ⊂ EndK(X), nX,i = 1, τ(E) ⊂ K ∀ τ ∈ ΣE .

Let us assume that there exists a maximal ideal λ of O such that

EndG̃λ,X,K
(Xλ) = k(λ)

and G̃λ,X,K does not contain a proper normal subgroup with index dividing dX,E.

Then End0(X, i) = i(E) ∼= E.

Proof. By Corollary 3.13, the condition on the centralizer implies that
[

End0(X, i)
]Gal(K)

= End0K(X, i) = i(E).

Applying Theorem 6.10, we conclude that End0(X, i) is a field containing E and
[

End0(X, i) : E
]

divides dX,E . By Remark 3.11, there exist a finite Galois extension
F/K and an overfield K of K that is a subfield of F that enjoys the following
properties.
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(i)

EndG̃λ,X,K
(Xλ) = EndG̃λ,X,K

(Xλ) = k(λ)

and

G̃λ,X,K = G̃λ,X,K ⊂ Autk(λ)(Xλ).

This implies that End0K(X, i) = i(E).
(ii) There is a surjective group homomorphism

Gal(F/K) ։ G̃λ,X,K = G̃λ,X,K ,

which is a minimal cover. In particular, Gal(F/K) also does not contain a
proper normal subgroup with index dividing dX,E .

(iii) The homomorphism

κX,K : Gal(K) → Aut(End0(X)) = AutQ(End
0(X))

factors through

Gal(K) ։ Gal(F/K).

Since End0(X, i) is a Gal(K)-stable subalgebra of End0(X), there is a group
homomorphism

κ : Gal(F/K) → AutQ(End
0(X, i)),

such that the subalgebra
[

End0(X, i)
]Gal(F/K)

of Gal(F/K)-invariants co-
incides with

[

End0(X, i)
]Gal(K)

= End0K(X, i) = i(E).

Let Γ be the image of

κ : Gal(F/K) → Aut
(

End0(X, i)/i(E)
)

.

Clearly,
[

End0(X, i)
]Γ

= i(E)

and Galois theory tells us that |Γ| =
[

End0(X, i) : i(E)
]

. This implies that ker(κ)

is a subgroup of index
[

End0(X, i) : i(E)
]

in Gal(F/K). This implies that the index
of ker(κ) in Gal(F/K) divides dX,E and therefore Gal(F/K) = ker(κ), i.e., Γ is the
trivial group of order 1 and

i(E) =
[

End0(X, i)
]Γ

= End0(X, i).

�

Remark 6.12. Theorem 6.11 is a generalization of ([44, Th. 3.12(ii)] 3 , [45, Th.
3.12(ii)]).

3The assertion (ii)(a) of [44, Th. 3.12(ii)] is wrong without additional assumptions.
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7. Doubly Transitive Permutation Groups and Permutational

Modules

In order to apply our results to endomorphism algebras of superelliptic jacobians,
we need to discuss modular representations that correspond to permutation groups.

Let T be a finite nonempty set, n = |T | and Perm(T ) ∼= Sn the group of permu-
tations of T . We write Alt(T ) ∼= An for the only (normal) subgroup of index 2 in
Perm(T ).

Let ℓ be a prime. One may attach to T the following natural linear representa-
tions of Perm(T ) over Fℓ. In what follows we assume that

n ≥ 3.

First, let us consider the space FT
ℓ of all functions φ : T → Fℓ. The action of

Perm(T ) on T gives rise to the faithful n-dimensional linear representation

Perm(T ) → AutFℓ
(FT

ℓ ).

More precisely, each g ∈ Perm(T ) sends a function φ : T → Fℓ to the function

[g]φ : t 7→ φ(g−1t) ∀t ∈ T.

The representation space FT
ℓ contains the invariant line Fℓ · 1T of constant func-

tions (where 1T is the constant function 1) and the invariant (n − 1)-dimensional
hyperplane of functions with zero “integral”

(FT
ℓ )

0 = {φ : T → Fℓ |
∑

t∈T

φ(t) = 0} ⊂ FT
ℓ .

Clearly,

Fℓ · 1T = (FT
ℓ )

Perm(T ),

i.e., Fℓ · 1T is the subspace of Perm(T )-invariants in FT
ℓ .

If ℓ does not divide n then

FT
ℓ = Fℓ · 1T ⊕ (FT

ℓ )
0.

This implies that if ℓ does not divide n then (FT
ℓ )

0 is a faithful Perm(T )-module.
If ℓ divides n then Fℓ ·1T ⊂ (FT

ℓ )
0 and we may get the heart of the permutational

representation [13]

(FT
ℓ )

00 = (FT
ℓ )

0/(Fℓ · 1T ),

which also carries the natural structure of (n− 2)-dimensional representation space

Perm(T ) → AutFℓ
((FT

ℓ )
00).

We may also consider the quotient

(FT
ℓ )0 = FT

ℓ /(Fℓ · 1T ),

which is also provided with the natural structure of (n− 1)-dimensional represen-
tation space

Perm(T ) → AutFℓ
((FT

ℓ )0)

[25]. If ℓ does not divide n then the Perm(T )-modules (FT
ℓ )

0 and (FT
ℓ )0 are canon-

ically isomorphic. If ℓ divides n then

(FT
ℓ )0 = FT

ℓ /(Fℓ · 1T ) ⊃ (FT
ℓ )

0/(Fℓ · 1T ) = (FT
ℓ )

00,

i.e., (FT
ℓ )0 contains a Perm(T )-invariant hyperplane that is isomorphic as Perm(T )-

module to (FT
ℓ )

00.
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Lemma 7.1. Suppose that

n ≥ 4, ℓ > 2, ℓ | n.

Then both Perm(T )-modules (FT
ℓ )

00 and (FT
ℓ )0 are faithful.

Proof. Since (FT
ℓ )

00 is isomorphic to a submodule of (FT
ℓ )0, it suffices to check the

faithfulness of Perm(T )-module (FT
ℓ )

00. Let g be a non-identity permutation of
T . The there is t ∈ T such that s = g(t) 6= t. Let u := g−1(t). Clearly, u 6= t.
No matter whether u coincides with s or not, there exists φ ∈ (FT

ℓ )
0 such that

φ(s) = φ(u) = 1, φ(t) = 0. (Here we use that |T | = n > 3.) Then

[g]φ(s) = φ(t) = 0, [g]φ(t) = φ(u) = 1.

This implies that the function [g]φ−φ takes values −1 at s and 1 at t. In particular,
it is not a constant function. This implies that the image of φ in (FT

ℓ )
0/Fℓ · 1T ) =

(FT
ℓ )

00 is not g-invariant. This implies that the action of Perm(T ) on (FT
ℓ )

00 is
faithful. �

Lemma 7.2. Suppose that

n ≥ 5, ℓ = 2, 2 | n.

Then both Perm(T )-modules (FT
2 )

00 and (FT
2 )0 are faithful.

Proof. Since (FT
2 )

00 is isomorphic to a submodule of (FT
2 )0, it suffices to check the

faithfulness of Perm(T )-module (FT
2 )

00. Since Alt(T ) is a subgroup of Perm(T ),
(FT

2 )
00 carries the natural structure of the Alt(T ) -module and it is known [13] that

this module is simple. Since dimF2((F
T
2 )

00) = n− 2 ≥ 5− 2 > 1, the corresponding
homomorphism Alt(T ) → AutF2((F

T
2 )

00) is nontrivial. Since Alt(T ) ∼= An is simple
(recall that n ≥ 5), this homomorphism must be injective. Since An is the only
normal subgroup of Sn

∼= Perm(T ) (except the trivial one and Sn itself), we con-
clude that the group homomorphism Perm(T ) → AutF2((F

T
2 )

00) is injective, i.e.,
(FT

2 )
00 is a faithful Perm(T )-module. �

Remark 7.3. The only missing cases not covered by Lemmas 7.1 and 7.2 corre-
spond to n = ℓ = 3 and n = 4, ℓ = 2. In both cases the Perm(T )-module (FT

2 )
00 is

not faithful.

Let G ⊂ Perm(T ) be a permutation (sub)group. We may view FT
ℓ , (F

T
ℓ )

0, (FT
ℓ )

00, (FT
ℓ )0

as Fℓ-linear representations of G. One may easily check that the Fℓ-dimension of the
subspace (FT

ℓ )
G of G-invariants equals the number of G-orbits in T . In particular,

(FT
ℓ )

G = Fℓ · 1T if and only if G is transitive.
The following statement is contained in [9, Satz 4 and Satz 11]. (In the notation

of [9],

p = ℓ,K = Fℓ,Ω = T,M1 = (FT
ℓ )0,M = (FT

ℓ )
00. )

Lemma 7.4. (i) Suppose that ℓ does not divide n and G acts transitively on
T . Then EndG((F

T
ℓ )

0) = Fℓ if and only if G is doubly transitive.
(ii) Suppose that ℓ divides n. If G is 3-transitive then

EndG((F
T
ℓ )

00) = Fℓ.

(iii) Suppose that n ≥ 4, G acts transitively on T and ℓ divides n. Suppose that
EndG((F

T
ℓ )

00) is a field. Then either ℓ = 2 and n is congruent to 2 modulo
4 or G is doubly transitive.
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Actually, one may remove the transitivity condition in Lemma 7.4(a).

Corollary 7.5. Suppose that ℓ does not divide n. Then EndG((F
T
ℓ )

0) = Fℓ if and
only if G is doubly transitive.

Proof. Recall that n ≥ 3. In light of Lemma 7.4(a), we need to check only the
transitivity of G if EndG((F

T
ℓ )

0) = Fℓ.
Suppose that G is not transitive, i.e., one may split T into a disjoint union

T = T1 ∪ T2 of two nonempty G-stable subsets T1 and T2. If we put ni = |Ti| then
n1 + n2 = n and both ni ≥ 1. Since ℓ does not divide n, it does not divide, at
least, one of ni. We may assume that ℓ does not divide n1. Let us consider u ∈
EndG((F

T
ℓ )

0) that is defined as follows. For each φ ∈ (FT
ℓ )

0 the function u(φ) takes
the value n1

(
∑

t∈T2
φ(t)

)

at every point of T2 and takes the value −n2

(
∑

t∈T2
φ(t)

)

at every point of T1. Clearly, the image of u is the one-dimension subspace of (FT
ℓ )

0

that is generated by the function

ψ : T → Fℓ, ψ(t2) = n1 ∀t2 ∈ T2, ψ(t1) = −n2 ∀t1 ∈ T1.

Since dimFℓ
((FT

ℓ )
0) > 1, u is not a scalar and we get a desired contradiction. �

The following assertion is a special case of [13, Lemma 2 on p. 3].

Lemma 7.6. Suppose that ℓ | n, G is transitive and the G-module (FT
ℓ )

00 is simple.
Then the list of G -invariant subspaces of FT

ℓ consists of {0},FT
ℓ ,Fℓ · 1T , (F

T
ℓ )

0.

This lemma implies readily the following corollary.

Corollary 7.7. Suppose that ℓ | n, G is transitive and the G-module (FT
ℓ )

00 is sim-
ple. Then the list of G -invariant subspaces of (FT

ℓ )0 consists of {0}, (FT
ℓ )

00,FT
ℓ )0.

Theorem 7.8. Suppose that ℓ | n, G is transitive and the G-module (FT
ℓ )

00 is
absolutely simple. Then

EndG
((

FT
ℓ

)

0

)

= Fℓ.

Proof. The absolute simplicity of (FT
ℓ )

00 implies that

EndG((F
T
ℓ )

00) = Fℓ.

Let

u ∈ EndG((F
T
ℓ )0).

We need to prove that u ∈ Fℓ, i.e., u is a scalar. Then u((FT
ℓ )

00) ⊂ (FT
ℓ )0 is a

G-invariant subspace of (FT
ℓ )0 of dimension ≤ n− 2. It follows from Corollary 7.7

that u((FT
ℓ )

00) ⊂ (FT
ℓ )

00. Since EndG((F
T
ℓ )

00) = Fℓ, there is a ∈ Fℓ such that the
restriction of u to (FT

ℓ )
00 coincides with multiplication by a, i.e., (u− a)((FT

ℓ )
00) =

{0}. Since (FT
ℓ )

00 has codimension 1 in (FT
ℓ )0, the image W := (u− a)((FT

ℓ )0) has
dimension ≤ 1. Since W is obviously G-stable, it follows from from Corollary 7.7
that W = {0}, i.e., u − a = 0, which in turn means that u = a, i.e., is a scalar.
This ends the proof. �

Example 7.9. Suppose that ℓ | n and n ≥ 5. If G = Perm(T ) or Alt(T ) then G is
transitive and the G-module (FT

ℓ )
00 is absolutely simple [13]. By Theorem 7.8,

EndG
((

FT
ℓ

)

0

)

= Fℓ.

This assertion is actually contained in Lemma 3.7 of [25, p. 339].
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8. Superelliptic jacobians

The aim of this section is to apply results of Section 6 to endomorphism algebras
of superelliptic jacobians, using group-theoretic constructions of Section 7.

Let p be a prime, r a positive integer, q = pr and ζq ∈ C be a primitive qth
root of unity, E := Q(ζq) ⊂ C the qth cyclotomic field and O := Z[ζq ] the ring of
integers in Q(ζq) = E.

Let us assume that char(K) 6= p and K contains a primitive qth root of unity ζ.
Let f(x) ∈ K[x] be a polynomial of degree n ≥ 3 without multiple roots, Rf ⊂ Ka

the (n-element) set of roots of f and K(Rf ) ⊂ Ka the splitting field of f . We
write Gal(f) = Gal(f/K) for the Galois group Gal(K(Rf )/K) of f ; it permutes
the roots of f and may be viewed as a certain permutation group of Rf , i.e., as a
subgroup of the group Perm(Rf ) ∼= Sn of permutations of Rf . (The transitivity of
Gal(f) is equivalent to the irreducibility of f(x).) There is the canonical surjection

Gal(K) ։ Gal(K(Rf )/K) = Gal(f).

In particular, we may view Gal(f)-modules

F
Rf
p , (F

Rf
p )0, (F

Rf
p )00, (F

Rf
p )0

as Gal(K)-modules.
Let Cf,q be a smooth projective model of the smooth affine K-curve yq = f(x).

The map (x, y) 7→ (x, ζy) gives rise to a non-trivial birational K-automorphism
δq : Cf,q → Cf,q of period q. The jacobian J(Cf,q) of Cf,q is an abelian variety
that is defined over K. By Albanese functoriality, δq induces an automorphism
of J(Cf,q) which we still denote by δp. It is known ([15, p. 149], [18, p. 458],
[39, 42],[25, Lemma 2.6]) that δq satisfies

Pq(δq) = 0 ∈ End(J(Cf,q))

where the polynomial

Pq(t) =
tq − 1

t− 1
= tq−1 + · · ·+ 1 ∈ Z[t].

Notice that

P(t) =

r
∏

j=1

Φpj (t)

where Φpj (t) ∈ Z[t] is the pjth cyclotomic polynomial of degree (p− 1)pj−1.

Let us consider the abelian K-subvariety J (f,q) of J(Cf,q) defined as follows.

J (f,q) = Pq/p(δq)((Cf,q)) ⊂ J(Cf,q).

It is known [39, 44, 42, 25] that J (f,q) is positive-dimensional and J(Cf,q) is K-

isogenous to a product
∏r

j=1 J
(f,pj). E.g., if q = p (i.e, r = 1) then J(Cf,p) = J (f,p).

(See also [24].)
Clearly, J (f,q) is δq-invariant and

Φq(δq)(J
f,q) = {0}.

This gives rise to the embedding

ı : Z[ζq] → EndK(J (f,q))

that sends 1 to 1J(f,q) and ζq to the restriction of δq to J (f,q).
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Extending i by Q-linearity to the Q-algebra embedding

i : E = Q(ζq) →֒ End0K(J (f,q)),

which we continue to denote by i. Recall that

[E : Q] = [Q(ζq) : Q] = (p− 1)pr−1.

The dimension of J (f,q) and dJ(f,q) ,E are as follows [15, 18, 39, 42, 44, 25].

(i) If p does not divide n then

2dim
(

Jf,q
)

= (n− 1)(pr − pr−1), dJ(f,q),E = n− 1.

(ii) If q divides n then

2dim
(

J (f,q)
)

= (n− 2)(pr − pr−1), dJf,q,E = n− 2.

(These equalities follow from (i) combined with [39, Remark 4.3 on p. 352]).
(iii) If p divides n but q does not divide n then [25]

2dim
(

J (f,q)
)

= (n− 1)(pr − pr−1), dJ(f,q) ,E = n− 1.

Let λ be the maximal principal ideal (1− ζq)Z[ζq] in Z[ζq] = O. Its residue field
k(λ) = Fp.

Here is an explicit description of the Galois module Jf,q
λ [15, 18, 39, 42, 44, 25].

(0) If (n, p) is neither (3, 3) nor (4, 2) then

G̃λ,J(f,q) ,K
∼= Gal(f).

(i) If p does not divide n then J
(f,q)
λ is isomorphic to (F

Rf
p )0 [39, Lemma 4.11].

(When p = q this assertion was proven in [18].)

(ii) If q divides n then J
(f,q)
λ is isomorphic to (F

Rf
p )00, see Theorem 9.1 below.

( When q = p this assertion was proven in [15]).

(iii) If p divides n but q does not divide n then J
(f,q)
λ is isomorphic to (F

Rf
p )0

[25]. 4

The results of Section 7 imply readily the following statement.

Lemma 8.1. Suppose that (n, p) is neither (3, 3) nor (4, 2). Then the following
conditions hold.

(A) The group G̃λ,J(f,q) ,K is isomorphic to Gal(f).
(B) If p does not divide n and Gal(f) is doubly transitive then

EndG̃
λ,J(f,q),K

(J
(f,q)
λ ) = Fp.

(C) If q divides n and either Gal(f) is 3-transitive or

EndGal(f)((F
Rf
p )00) = Fp

then

EndG̃
λ,J(f,q),K

(J
(f,q)
λ ) = Fp.

4J. Xue [25] assumed that char(K) = 0. However, all his arguments related to the computation

of dim
(

J(f,q)
)

and J
(f,q)
λ

work under a weaker assumption that char(K) 6= p.
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(D) Suppose that p divides n but q does not divide n. Assume also that Gal(f) is

transitive (i.e., f(x) is irreducible over K) and the Gal(f)-module (F
Rf
p )00

is absolutely simple. Then

EndG̃
λ,J(f,q),K

(J
(f,q)
λ ) = Fp.

Now let us assume that char(K) = 0. Here are the explicit formulas for nJ(f,q),i.
Let

n = kq + c, k, c ∈ Z+, 0 ≤ c < q.

(i) Suppose that p does not divide n, i.e., c ≥ 1. Then nJ(f,q),i are as follows
[44, 45, Sections 4 and 5, especially, Remark 4.1 and Lemma 5.1].
(1) if n = kq + 1 (i.e., c = 1) then nJ(f,q) ,i = k.
(2) If p is odd and n−1 is not divisible by q (i.e., c > 1) then nJ(f,q) ,i = 1.
(3) If p = 2 < q and n−1 is not divisible by q (i.e., c > 1) then nJ(f,q) ,i = 1

or 2. In addition, if either k is odd or c < q/2 then nJ(f,q),i = 1.
(ii) Suppose that q divides n. Then c = 0 and

n− 1 = (k − 1)q + (q − 1).

Using [39, Remark 4.3 on p. 352], and (i), we obtain the following results
similar to (i), replacing n by n− 1, n− 1 by n− 2, k by k− 1 and c by q− 1
respectively.
(1) If p is odd then (n− 2) is not divisible by q and nJ(f,q),i = 1.
(2) If p = 2 < q then n− 2 is not divisible by q and nJ(f,q) ,i = 1 or 2. In

addition, if k − 1 is odd (i.e., k is even) then nJ(f,q),i = 1.
(iii) If n ≥ 5, p divides n but q does not divide n then nJ(f,q),i = 1 [25, Prop.

2.2 and Remark 2.3].

Remark 8.2. The case of n = 3 is discussed in [42, 26]; see also [17].

Theorem 8.3. Suppose that n ≥ 4 and char(K) = 0. If p | n then we assume
additionally that n ≥ 5.

If End0(J (f,q), i) coincides with i(Q(ζq)) = Q[δq] then

End0(J (f,q)) = Q[δq] ∼= Q(ζq), End(J (f,q)) = Z[δq] ∼= Z[ζq ].

Proof. (i) Suppose that p does not divide n. Then the result is proven in [39,
Theorem 4.16].

(ii) Suppose that q | n. This case follows from (i), thanks to Remark 4.3 of
[39].

(iii) Suppose that p | n but q does not divide n. Then the result is proven in
[25, Cor. 4.4]

�

Theorem 8.4. Suppose that n ≥ 4 and (n, p) is not (4, 2). Assume also that there
is a a subgroup

G ⊂ Gal(f) ⊂ Perm(Rf )

such that one of the following three conditions holds.

(i) The prime p does not divide n, G is doubly transitive and does not contain
a subgroup, whose index divides (n− 1) except G itself.
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(ii) The prime power q divides n, G does not contain a proper subgroup, whose
index divides (n− 2). In addition, either G is 3-transitive or

EndG((F
Rf
p )00) = Fp.

(iii) The prime p divides n but q does not divide n. The group G is transitive and
does not contain a proper proper subgroup, whose index divides (n− 1). In
addition, assume that (at least) one of the following two conditions holds.

(A3) The group G is transitive and the G-module (F
Rf
p )00 is absolutely sim-

ple.

(B3) The centralizer EndG

(

(F
Rf
p )0

)

= Fp.

Then
G̃λ,J(f,q) ,K

∼= Gal(f), EndG̃
λ,J(f,q),K

(J
(f,q)
λ ) = Fp,

End0(J (f,q)) is a simple Q-algebra, whose center is a subfield of Q[δq], and the

centralizer End0(J (f,q), i) of Q[δq] in End0(J (f,q)) is a central simple Q[δq]-algebra.

Remark 8.5. By Theorem 7.8, the condition (A3) of Theorem 8.4 implies the
condition (B3).

Proof of Theorem 8.4. Replacing K by its overfield K(Rf)
G , we may and will as-

sume that Gal(f) = G. it follows from Lemma 8.1 that

EndG̃
λ,J(f,q),K

(J
(f,q)
λ ) = Fp.

Now the desired result follows from Theorems 3.14. �

Remark 8.6. Suppose that q = 2, i.e.

Z[ζq] = Z,Q[ζq] = Q,Q[δq] = Q.

In this case Cf,2 is a hyperelliptic curve of genus [(n− 1)/2], and

J(Cf,2) = J (f,2),

[

n− 1

2

]

= dim(J(Cf,2)) = dim
(

J (f,2)
)

.

Applying Theorem 2.9 (instead of Theorems 3.14), we can do slightly better.

Namely, we obtain that End0(J(Cf,2)) is a central simple Q-algebra if there is
a subgroup G of Gal(f) that enjoys the following properties.

• G contains neither a normal subgroup of index 2 nor a proper subgroup of
index dividing [(n− 1)/2].

• One of the following two conditions holds.
(1) n is odd and G is 2-transitive
(2) n is even and either G is 3-transitive or

EndG((F
Rf
p )00) = Fp.

It follows from Albert’s classification [14, Sect. 21] that the central simple Q-

algebra End0(J(Cf,2)) is isomorphic either to a matrix algebra overQ or to a matrix
algebra over a quaternion Q-algebra. See [27, 28, 29, 37, 30, 3, 4, 5, 31, 38, 33, 40]
for other results about endomorphism algebras of hyperelliptic jacobians.

Theorem 8.7. Let us assume that

char(K) = 0, n ≥ 4, q > 2.

If p | n then we assume additionally that n ≥ 5.
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Suppose that there is a subgroup

G ⊂ Gal(f) ⊂ Perm(Rf )

such that (at least) one of the following three conditions holds.

(i) The prime p does not divide n, G is doubly transitive and does not contain a
proper normal subgroup, whose index divides (n− 1). Assume additionally
that

n = kq + c, k, c ∈ Z+, 0 ≤ c < q.

where integers p, k and c enjoy (at least) one of the following three proper-
ties.
(A1) n = q + 1, i.e., k = 1, c = 1.
(B1) p is odd and c > 1 (i.e., q does not divide n− 1).
(C1) p = 2 < q, c > 1 and either k is odd or c < q/2.

(ii) The prime power q divides n, G does not contain a proper normal subgroup,
whose index divides (n− 2). We also assume that p and k enjoy (at least)
one of the following three properties.
(A2) p is odd.
(B2) p = 2 < q and k is even.
(C2) Either G is 3-transitive or

EndG

(

(F
Rf
p )00

)

= Fp.

(iii) The prime p divides n but q does not divide n. The group G does not contain
a proper normal subgroup, whose index divides (n− 1).

In addition, assume that (at least) one of the following two conditions
holds.
(A3) The group G is transitive and the G-module (F

Rf
p )00 is absolutely sim-

ple.

(B3) The centralizer EndG

(

(F
Rf
p )0

)

= Fp.

Then

End0(J (f,q)) = Q[δq] ∼= Q(ζq), End(J (f,q)) = Z[δq] ∼= Z[ζq ].

Proof. Clearly, (n, p) is neither (3, 3) nor (4, 2). Notice that our conditions on n
and q imply that nJ(f,q),E = 1. Second, Theorem 8.4 implies that

G̃λ,J(f,q) ,K
∼= Gal(f), EndG̃

λ,J(f,q),K
(Jf,q

λ ) = Fp.

Now Theorem 6.11 implies that the centralizer End0(J (f,q), i) coincides with Q[δq] =
i(Q(ζq)). Now the desired result follows from Theorem 8.3. �

Remark 8.8. Suppose that char(K) = 0, n ≥ 5 and Gal(f) coincides either with
the full symmetric group Perm(Rf ) ∼= Sn or the alternating group Alt(Rf ) ∼= An.
Then

End0(J (f,q)) = Q[δq] ∼= Q(ζq), End(J
(f,q)) = Z[δq] ∼= Z[ζq]

without any additional conditions on n and q. The case when either p does not

divide n or q | n was done in [39], the case when p | n but q does not divide
n was done in [25]. The proofs in [39] are based on the notion of a very simple

representation that was introduced in [28], see also [40].
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Remark 8.9. Theorem 8.7 is a generalization of ([44, Th. 5.2] 5 , [45, Th. 5.2]).

9. δq-invariant divisors on superelliptic curves

The aim of this section is to construct an isomorphism between the Galois mod-

ules J
(f,q)
λ and (F

Rf
p )00 when q divides n. (The existence of such an isomorphism

was stated and used in Section 8.)
Suppose that n = deg(f) is divisible by q, i.e, there is a positive integer m such

that

n = mq.

We write B = Bf for the set

B = {(α, 0) | α ∈ Rf} ⊂ Cf,q(Ka).

The set B consists of δq-invariant points of Cf,q(Ka). Clearly, Cf,q(Ka) contains
an affine curve

(Cf,q)0(Ka) = {(a, b) ∈ K2
a | f(a, b) = 0}.

The complement Cf,q(Ka)\(Cf,q)0(Ka) is a finite nonempty set; we call its elements
infinite points of Cf,q. The rational function x ∈ Ka(Cf,q) defines a finite cover
π : Cf,q → P1 of degree q. The set of branch points contains B and sits in the
(disjoint) union of B and the (finite) set of infinite points of Cf,q; π sends the latter
set to the infinite point ∞ of P1(Ka). Clearly, y is a local parameter at every P ∈ B
and ordP (x − x(P )) = q. If ∞̃ is any infinite point of C then both ord∞̃(x) and
ord∞̃(y) are negative integers such that n · ord∞̃(x) = q · ord∞̃(y), i.e.,

ord∞̃(y) = m · ord∞̃(x).

It follows easily from the previous remark that if β ∈ Ka then the rational function
(x− β) ∈ Ka(Cf,q) has a pole at ∞̃, whose order does not depend on β, including
the cases β = 0 and β = α ∈ Rf .

The main result of this section is the following statement.

Theorem 9.1. Suppose that n = deg(f) is divisible by q = pr.

Then the Gal(K)-modules J
(f,q)
λ and (F

Rf
p )00 are isomorphic.

In the course of the proof of Theorem 9.1 we will use the following assertion that
will be proven at the end of this section.

Lemma 9.2. Let D =
∑

P∈B aP (P ) be a degree zero divisor with support in B.

Then the linear equivalence class of pr−1D is zero if and only if there exists an
integer j such that all integers aP ’s are congruent to j modulo p.

Proof of Theorem 9.1 (modulo Lemma 9.2). The map P → x(P ) establishes a Galois-
equivariant bijection between B and Rf . So, it suffices to check that the Galois

modules J
(f,q)
λ and (FB

p )
00 are isomorphic. Notice that

J
(f,q)
λ = {x ∈ J (f,q)(Ka) | δq(x) = x} ⊂ J (f,q)(Ka) =

Pq/p(δq)((J(Cf,q)(Ka)) =
(

1 + δq + · · ·+ δp
r−1

−1
q

)

(J(Cf,q)(Ka)).

Since B ⊂ Cf,q(Ka) consists of δq-invariant points, the linear equivalence class of
every degree zero divisor D =

∑

P∈B aP (P ) is a δq-invariant point of J(Cf,q)(Ka).

5In Th. 5.2 of [44] the assertion (ii)(a) is actually not proven and should be ignored.
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This implies that that the linear equivalence class of pr−1D =
∑

P∈B p
r−1aP (P )

lies in

{x ∈ J (f,q)(Ka) | δq(x) = x} = J
(f,q)
λ ⊂ J (f,q)(Ka) ⊂ J(Cf,q)(Ka).

Let us consider the following Galois-equivariant homomorphism of Fp-vector
spaces

Ψ : (FB
p )

0 → J
(f,q)
λ .

Let φ : B → Fp be a function with
∑

b∈B φ(b) = 0. We may “lift” φ to a map
P → aP ∈ Z in such a may that

bP mod p = φ(P ) ∀P ∈ B,
∑

P∈P

aP = 0.

Then D =
∑

P aP (P ) is a degree zero divisor on Cf,q with support in B. We define

Ψ(φ) ∈ J
(f,q)
λ as the linear equivalence class of pr−1D. First, notice that our map

is well-defined. Indeed, if P 7→ aP lifts the zero function then all aP are divisible
by p and therefore all the coefficients of pr−1D are divisible by p · pr−1 = q. It
follows from by Lemma 9.2 that the class of pr−1D is zero. This proves that Ψ is
well-defined. Clearly, Φ is a group homomorphism and therefore is a Fp-linear map.
It follows from the same Lemma that φ ∈ ker(Ψ) if and only if there exists j ∈ Z

such that all (the corresponding) aP ’s are congruent to j modulo p. This means
that

φ(P ) = j mod p ∀P ∈ B,

i.e., φ is a constant function. In other words, ker(Ψ) = Fp ·1B. Therefore Φ induces
a Galois-equivariant embedding of Fp-vector spaces

(FB
p )

00 = (FB
p )

0/(Fp · 1B) →֒ J
(f,q)
λ .

This embedding is actually an isomorphism, since

dimFp
((FB

p )
00) = n− 2 = dimFp

(J
(f,q)
λ ).

�

It remains to prove Lemma 9.2. We will need the following two assertions that
characterize principal divisors with support in B.

Lemma 9.3. Let D =
∑

P∈B aP (P ) be a divisor on Cf,q with support in B. Then
D is principal if and only if there exist a divisor D1 =

∑

P∈B bP (P ) on Cf,q with
support in B and a nonnegative integer j < q such that m divides deg(D1) =
∑

P∈B bP and

D = q
∑

B∈B

bP (P )−

∑

P∈B bP

m

(

∑

P∈B

(P )

)

.

Corollary 9.4. Let Q be a point of B. Then a divisor D =
∑

P∈B aP (P ) with
support in B is principal if and only if there is a degree zero divisor D0 with support
in B and an integer j such that

(7) D = qD0 + j

((

∑

P∈B

(P )

)

− n(Q)

)

.

In addition, all integers aP ’s are divisible by pr−1 if and only if j is divisible by
pr−1.
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Proof of Lemma 9.3. Suppose D = div(h) where h ∈ Ka(Cf,q) is a nonzero rational
function on Cf . Since D is δq-invariant, δ

∗
qh = hδq coincides with c · h for some

nonzrero c ∈ Ka. The δq-invariance of the splitting

Ka(Cf,q) = ⊕q−1
j=0y

j ·Ka(x)

implies that h(x) = yj · u(x) for some nonzero rational function u(x) ∈ Ka(x) and
a nonnegative integer j ≤ q − 1. It follows that all “finite” zeros and poles of u(x)
lie in B. i.e., there exists an integer-valued function P 7→ bP on B such that u(x)
coincides up to multiplication by a nonzero constant to

∏

P∈B(x− x(P ))bP . Recall
that the zero divisor of y is

∑

P∈B(P ) while the set of its poles coincides with the
set of infinite points of Cf and if ∞̃ is such a point then

ord∞̃(u) = (
∑

P∈B

bP )ord∞̃(x) =

∑

P∈B bP

m
· ord∞̃(y).

Since h(x) = yju(x) has neither zeros nor poles at infinite points of Cf,q,
∑

P∈B bP

m
+ j = 0.

On the other hand, for each P ∈ B,

aP = ordP (h) = j + ordP (u) = j + qbP .

This implies that

D =
∑

P∈B

aP (P ) = q
∑

P∈B

bP (P ) + j
∑

P∈B

(P ) = q
∑

P∈B

bP (P )−

∑

P∈B bP

m
(
∑

P∈B

(P )).

Conversely, suppose that there is a divisor
∑

P∈B bP (P ) on Cf with support in

B such that m divides
(
∑

P∈B bP
)

and

D = q
∑

P∈B

bP (P )−

∑

P∈B bP

m

(

∑

P∈B

(P )

)

.

Clearly, deg(D) = 0. Let us put

j := −

∑

P∈B bP

m
.

Let us consider the (nonzero) rational function

h = yj
∏

P∈B

(x− x(P ))bP ∈ Ka(Cf ).

Clearly h has neither zeros nor poles at infinite points of Cf , because

ord∞̃(h) = jord∞̃(y)+(
∑

P∈B

bP )ord∞̃(x) = (mj+
∑

P∈B

bP )ord∞̃(x) = 0·ord∞̃(x) = 0.

This implies that the support of div(h) lies in B. For each P ∈ B

ordP (h) = j + qbP = aP .

This implies that D = div(h), i.e., D is principal. �
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Proof of Corollary 9.4. Clearly, n(Q) −
∑

P∈B(P ) is the divisor of the rational

function (x− x(Q))m /y and q ((P )− (Q)) is the divisor of the rational function
(x− x(P ))/(x − x(Q)). This implies that a divisor D of the form (7) is principal.

Conversely, suppose that a divisor D =
∑

P∈B aP (P ) with support in B is
principal. Let

∑

P∈B bP (P ) and j be as in Lemma 9.3 and its proof, i.e.,

j = −

∑

P∈B bP

m
∈ Z, D = q

∑

P∈B

bP (P ) + j

(

∑

P∈B

(P )

)

.

Let us put

D0 = (
∑

P∈B

bP (P ))− (
∑

P∈B

bP )(Q) = (
∑

P∈B

bP (P )) + jm(Q).

Clearly, D0 is a degree zero divisor with support in B and

D = q
∑

P∈B

bP (P )− q(
∑

P∈B

bP )(Q) + q(
∑

P∈B

bP )(Q) + j

(

∑

P∈B

(P )

)

=

qD0−qjm(Q)+j

(

∑

P∈B

(P )

)

= qD0−jn(Q)+j

(

∑

P∈B

(P )

)

= qD0+j

((

∑

P∈B

(P )

)

− n(Q)

)

.

In order to prove the second assertion of Corollary, notice that both q = pr and
n = qm = prm are divisible by pr−1 and therefore all the coefficients of D are
divisible by pr−1 if and only if all the coefficients of j

(
∑

P∈B(P )
)

are divisible by

pr−1 as well. All the coefficients of j
(
∑

P∈B(P )
)

are equal to j and therefore are

divisible by pr−1 if and only if j is divisible by pr−1. �

Proof of Lemma 9.2. Let us fix a point Q ∈ B.
Suppose that the class of pr−1D is zero. By Corollary 9.4 (applied to pr−1D),

there exist a a degree zero divisorD0 =
∑

P ∈ BbP (P ) and an integer j0 = j0(Q) ∈
Z such that

pr−1D = prD0 + pr−1j0

((

∑

P∈B

(P )

)

− n(Q)

)

.

This means that

pr−1aQ = prbQ + pr−1j0(Q) · (1 − n), pr−1aP = prbP + pr−1j0(Q) ∀P ∈ B \ {Q}.

The first equality implies that (1 − n)j0(Q) is congruent to aQ modulo p, which
means that j0(Q) is congruent to aQ modulo p (since p | n). The second equality
implies that aP is congruent to j0(Q) modulo P , i.e., aP is congruent to aQ for all
P ∈ B \ {Q}. Since aQ is obviously congruent to itself modulo p, we obtain that
aP is congruent to aQ modulo p for each P,Q ∈ B. Now we may put j = aQ.

Conversely, suppose that D =
∑

P∈B aP (P ) is a degree zero divisor with support
in B such that all aP are congruent modulo p to a certain fixed (independent on
P ) integer j. Then

pr−1D = pr−1j

(

∑

P∈B

(P )

)

+ pr−1p

(

∑

P∈B

(aP − j)

p
(P )

)

=

pr−1j

(

∑

P∈B

(P )

)

+ pr

(

∑

P∈B

bP (P )

)
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where bP = (aP − j)/p. Clearly,

∑

P∈B

bP =
∑

P∈B

(aP − j)

p
=

1

p

(

∑

P∈B

(aP − j)

)

=
1

p
n (−j) = −pr−1mj.

This implies that

pr−1D = pr−1j

((

∑

P∈B

(P )

)

− n(Q)

)

+ pr−1jn(Q) + pr

(

∑

P∈B

bP (P )

)

=

pr−1j

((

∑

P∈B

(P )

)

− n(Q)

)

+ prD0

where Q is any point of B and

D0 = pr−1jm(Q) +

(

∑

P∈B

bP (P )

)

.

Since deg(D) = 0, the degree of D0 is also zero. It follows from Corollary 9.4 that
the class of pr−1D is 0. �
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