University of Groningen

Regularity properties and pathologies of position-space renormalization-group transformations

van Enter, Aernout C.D.; Fernández, Roberto; Sokal, Alan D.

Published in:
Nuclear Physics B

DOI:
10.1016/0920-5632(91)90880-N

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1991

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van Enter, A. C. D., Fernández, R., \& Sokal, A. D. (1991). Regularity properties and pathologies of positionspace renormalization-group transformations. Nuclear Physics B, 20(C), 48-52. https://doi.org/10.1016/0920-5632(91)90880-N

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

REGULARITY PROPERTIES AND PATHOLOGIES OF POSITION-SPACE RENORMALIZATBOMGROUP TRANSFORMATIONS

Aernout C.D. van Enter ${ }^{10 *}$, Roberto Fernández ${ }^{2}$, and Alan D. Sokal ${ }^{3, \dagger}$
${ }^{1}$ Institute for Theoretical Physics, Rijksunieersiteit Groningen, Groningen, THE NETHEKLANDS
${ }^{2}$ Theoretische Physik, ETH - Hönggerberg, CA-8093 Zürich, SWITZERLAND
${ }^{3}$ Department of Physics, New York University, 4 Weshivaton Place, New York, NY 10001 CXA

Abstract

We reconsider the conceptual foundations of the renormalization-group ($R G$) formalism. We show that the RG map, defined on a suitable space of interactions, is always single-valued and Lipschitz contimuous on its domain of definition. This rules out a recently proposed scenanio for the RG description of first-order phase transitions. On the other hand, we prove in sev*ral cases that near a first-order phase transition the renormalized measure is not a Gibbs measure for any reasonable interaction. It follows that the conventional RG description of first-order transitions is not universally valid.

1. INTRODUCTION

A principal tenet of the renormalization-group (RG) theory of phase transitions [1] is that the RG map, defined on a suitable space of Hamiltonians, is smooth (i.e. analytic or at least several-times differentiable), even on phase-transition surfaces. The singularities associated with critical points [1] and first-order phase transitions [2] are then explained in terms of the behavior of the RG map under infinite iteration.

This picture of a smooth RG map has, however, been questioned, particularly as regards the behavior near a first-order phase transition. On the one hand, several groups $[3,4,5,6]$ have reported numerical evidence suggesting that the RG map is discontinuous on the first-order transition surface. On the other hand, Griffiths and Pearce [7] have pointed out some "peculiarities" of the commonly used discrete-spin RG transformations (decimation, majority rule, etc.) in the low-temperature regime ${ }^{\ddagger}$; and israel [9] showed that in at least one such case the expectations of renormalized observables exhibit characteristics incompatible with a Boltzmann prescription, i.e. the renormalized measure is non-

[^0]
Gibbsian.

We have reconsidered the conceptual foundations of the RG formalism [10], and have proven that of these proposed pathologies, the only type that can (and does) occur is the Griffiths-PearceIsraed type. We prove that the RG map, defined on a suitable space of interactions ($=$ formal Hamitonians), is always single-valued and Lipschitz continuous on its domain of definition. On the other hand, we prove, extending Israel's [9] argument, that in several cases the RG map is ill-defined for a much more basic reason: the renormalized interaction may fail to exist altogether. Moreover, this pathology can occur in the vicinity of - not only at — a first-order phase transition: for the Ising model in dimension $d \geq 3$ it occurs in an open region $\left\{\beta>\beta_{0},|h|<\varepsilon(\beta)\right\}$.

Our point of view is the following: An RG map is defined initially as a rule (deterministic or stochastic) for generating a configuration ω^{\prime} of "block spins" given a configuration ω of "original spins". Mathematically this is given by a probability kernel $T\left(\omega \rightarrow \omega^{\prime}\right)$. One can then define a probability distribution $\mu^{\prime}\left(\omega^{\prime}\right)$ of block spins from any given probability distribution $\mu(\omega)$ of original spins:

$$
\begin{equation*}
\mu^{\prime}\left(\omega^{\prime}\right) \equiv \sum_{\omega} \mu(\omega) T\left(\omega \rightarrow \omega^{\prime}\right) \tag{1}
\end{equation*}
$$

In other words, the RG map is easily defined as
 shint hame nost appheatices of the remarmalizatiem grout zaswe (and mead) that the RG map is

 for suristicai-mechanicall system with Hamito-
 sure for a systern with sonve Hamsitomian $H^{\prime \prime}$. This定 takem to detine as RG map R on some surtable space of Hamsitonians, by tive diagrann

$$
\begin{array}{lll}
\boldsymbol{H} & \underline{T} & H^{\prime} \tag{2}\\
1 & & H \\
\boldsymbol{H} & \underline{m} & H^{\prime}
\end{array}
$$

Formally the relation between a Harnitomion and its corresponding Gbbs measure is given by $\mu=$ const $\times e^{-f}$. and hence the $R G$ map on the space of Hamiltonians is defined forraclly by
$H^{*}\left(\omega^{\prime \prime}\right)=-\log \left[\sum_{\omega^{\prime}} \epsilon^{-H(\omega)} T\left(\omega \rightarrow \omega^{n}\right)\right]+$ const.
However, this formule is welid only in farite wollmone; in infinite volume, the Hamitonian $H\left(\omega_{0}\right)$ is晿-defined (its value is almost surely $\mathbf{t \infty}$), and the connection between a formal Hamitonion (more precisely, an interaction) and its corresponding Gibbs measure(s) is much more complicated [11]. We emphasize that this is not a mere mathematical nicety: it contains the fundamental physics of phase transitions, which occur only in infinite volume.

Let us give a concrete example. Consider the Ising model in dimension $d \geq 2$ at low temperature ($\beta \gg \beta_{c}$) and zero-magnetic field. At such a point there are two pure phases (= extremal translationinvariant infinite-volume Gibbs measures), μ_{+}and $\mu_{\text {. }}$. These phases are characterized by a large magnetization $\pm M_{0}$ and a small correlation length ξ. After a block-spin transformation T, such as majority-rule, the image measures $\mu_{ \pm}^{\prime}$ will have a yet larger magretization $\pm M_{0}^{\prime}$ and a yet smaller correlation length ξ^{\prime}. We now ask: These image measures $\mu_{ \pm}^{\prime}$ are typical of what kind of Hamiltonian?

The conventional scenario [2] is that the RG flow is toward lower temperatures along the $h=0$

Line $e^{\frac{\pi}{7}-\text { in }}$ this case the two image measures $\mu_{ \pm}^{r}$ would be Gibbsian for the same Hamitonian H^{r}. A different possibility was suggested by Decker, Hasenfratz and Hasenfratz [5]. in which Hamiltonians H with an infintesimal positive (resp negative) magnetic Fred h would get mapped by a single RG step to renormalized Hamitionians H^{+}having a strictly positive (resp. strictily megrtive) magnetic feld k^{i}. Furthermore, at $N=0$ the inage measures $\mu_{ \pm}^{t}$ would be Grobsian for different Hamitonians $H_{ \pm}^{*}$ having (amoag other couplings) magnetic fields of difterent sign. Th this scesario, the $R G$ map R would be disearatinawous as owe appronclies the plase-transitiva Fine, and mualt-walued on that Fane. Both scemanies are consistent with the intuitive ides that magsetication increases and corvelation feagth decreases under the RG map.

We have proven [10] that the second scenario caraot occur: the RG map R is ahneys singevolued and Lupschintz comimanos mherever itis defined. On the other hand, in at least sonme cases [9,10 the first scexanio is not achid cinfier. because the Fianittoniex H^{*} faile to crive at cII. That is. if can occur that the image mearsor μ^{\prime} is ant a

2. GENERAL FRAMEWORK

Ove results apply to spstems on a fattice $\mathcal{C}=$ \mathbf{Z}^{2} characterized by a singlespin space Ω_{0}. whint comes equipped with a physically natural singlespin measure μ^{s}. The infinite-volume configination space Ω is the Cartesian prodsct $\left(\Omega_{0}\right)^{\boldsymbol{C}}=\{\omega=$ $\left.\left(\omega_{x}\right)_{x \in C} \mid \omega_{x} \in \Omega_{0}\right\}$. We consider venormaization maps" T from an original (or object) system ($\Omega=\Omega_{0}^{\mathcal{L}}, \mu^{\boldsymbol{0}}$) to an image (or renormatizel) sys$\operatorname{t\in m}\left(\boldsymbol{S}^{\prime}=\mathbf{S}_{0}^{\mathcal{E}}, \mu^{0}\right.$) such that: (T1) T is a probability kerne;; (T2) T carries translation-imvariant measures on $\boldsymbol{\Omega}$ into translation-invariant measures

[^1]on Ω^{\prime}; and (T3) T is strictly local in position space, that is, there exists a number $K<\infty$ (volume compression factor) such that the image spios in each region Λ^{\prime} depend only on the original spins in a certain region Λ with $|\Lambda| \leq K\left|\Lambda^{\prime}\right|$. This set-wo includes all of the usual deterministic or stochastic real-space renormalization schemes: decimation, majority rule and Kadanoff transformations. It excludes, due to the strict locality requirement, most momentum-space renormalization maps (but we conjecture that our results extend also to such maps).

The map $\mu \mapsto \mu^{\prime}$ induced by T is always welldefined; the problems arise when trying to complete (2) to define the renormalization-group map R on Hamiltonians. We consider only a single application of the RG map, so the semigroup property of the "renormalization (semi)group" plays no role for us.

Let us introduce some needed notions of infinite-volume statistical mechanics [13,14]. To make rigorous the idea of "formal Hamiltonian" (collection of one-body terms, two-body terms, etc.), we define an interaction to be a family $\Phi=\left(\Phi_{A}\right)$ of functions $\Phi_{A}: \Omega \rightarrow R$, such that for each finite $A \subset \mathcal{L}$, the function Φ_{A} depends only on the spins in the subset A. The interactions are assumed to be translation-invariant. As in a renormalization procedure interactions proliferate, we must allow interactions among arbitrarily many spins simultaneously, and therefore we must impose certain summability conditions: We consider the (Banach) space \mathcal{B}^{1} of translation-invariant continuous interactions with norm

$$
\begin{equation*}
\|\Phi\|_{\mathcal{B}^{1}} \equiv \sum_{A \ni 0}\left\|\Phi_{A}\right\|_{\infty}<\infty \tag{4}
\end{equation*}
$$

where $\left\|\Phi_{A}\right\|_{\infty}=\sup _{\omega}\left|\Phi_{A}(\omega)\right|$. Condition (4) ensures that for each finite volime Λ and boundary condition τ, there is a well-defined Hamiltonian $H_{\Lambda, \tau}^{\Phi}$ and Boltzmann-Gibbs distribution $\pi_{\Lambda, \tau}^{\Phi}$. The infinite-volume Gibbs measures for interaction Φ are then defined [11] to be those measures whose conditional probabilities on finite volumes are exactly the measures $\pi_{\Lambda, \tau}^{\Phi}$.

Some remarks are in order. First, we notice that the requirement (4) makes our results applicable,
for practical purposes, only to systems of bounded spins. Second, the same Hamiltonian (or, more precisely, the same conditional probabilities) can be expressed via different interactions. We should rot distinguish between such interactions, which are therefore called physically equivalent. With this identification Griffiths and Ruelle [15] have proven that the downward vertical arrow in (2) cannot be multi-valued. Third, the space \mathcal{B}° defined by the weaker norm

$$
\begin{equation*}
\|\Phi\|_{B^{0}} \equiv \sum_{A \geqslant 0}|A|^{-1} \| \Phi_{A \|_{10}}<\infty \tag{5}
\end{equation*}
$$

arises when the theory is constructed from a variational principle [13,14]. This space is much larger than \mathcal{B}^{1} (t admits interactions decaying more slowly with the number of bodies), and exhibits many unphysical features [13.16]. We contend that \mathcal{B}^{1} is the largest physically reasonable space of interactions.

3. REGULARITY PROPERTIES

Let us go back to the example of the Ising model. Suppose we are given a measure μ^{\prime} with a large positive magnetization and a small (but nonzero) correlation length; does this measure come from a Hamiltonian H^{\prime} with β large and $h=0$, or from a Hamiltonian with β not so large (possibly even small) and h large and positive?

One way to decide is to look to the largedeviation properties of the measure μ^{\prime}. Let Λ be a large cubical box of side L, and let $\mathcal{M}_{\Lambda} \equiv \sum_{x \in \Lambda} \sigma_{x}$ be the total spin in Λ. Clearly there is an overwhelming probability that \mathcal{M}_{Λ} will be positive; but how rare is it to have $\mathcal{M}_{\boldsymbol{\Lambda}}$ negative? If μ^{\prime} is a Gibbs measure for some Hamiltonian with $h>0$, then the event $\mathcal{M}_{\Lambda}<0$ is suppressed by the bulk magnetic field:

$$
\begin{equation*}
\operatorname{Prob}_{\mu^{\prime}}\left(M_{A}<0\right) \sim e^{-O\left(L^{d}\right)} . \tag{6}
\end{equation*}
$$

On the other hand, if μ^{\prime} is a Gibbs measure for some Hamiltonian with $h=0$ and $\beta>\beta_{c}$, then the event $\mathcal{M}_{\Lambda}<0$ is suppressed only by a surface energy:

$$
\begin{equation*}
\operatorname{Prob}_{\mu^{\prime}}\left(\mathcal{M}_{\Lambda}<0\right) \sim \epsilon^{-O\left(L^{d-1}\right)} . \tag{7}
\end{equation*}
$$

Git is now easy to decide berween the two scenatros for the RG flow. In the starting measure μ_{+}, the occurrence of a large segion with negative to tal spin is suppressed onty flike $\epsilon^{-C(4)} \mathrm{L}^{-3}$; roughty speaking, the measure gry "Lnows" that it is degenerate with the mexsure β.. But then in the block-spin meashre μ_{f+}^{f}, there must also be a probarbulity $Z e^{-0 L^{5-3}}$ of oloserving a negative total spin (since net negative oniginal spenimplies, with high protiabity a net negative block spin). Since this contradicts (6). we conclude that μ_{+}^{\prime} censisat be the Gibbs measure of a Hamitonian with stricthy posif tive magnetic field. Picturesquely, the image measure $\mu_{\#}^{\prime}$ "remembers" that it arose from an original Hamiltonian \boldsymbol{H} with coexisting phases. Therefore. the RG map canmai be multi-valued.

It is a relatively short step from these intuitive ideas to a nigorous proof for a general system. The result is [10]:

First fundamental theorem. If μ and y are Gibbs measures for the same interaction $\Phi \in B^{1}$, then either the renormalized measures μ^{\prime} and ν^{\prime} are both nonGibbsian, or eise there exists an interaction $\Phi^{\prime} \in B^{1}$ for which both $\mu^{\prime \prime}$ and ν^{\prime} are Gibbs measures. In the latter case, Φ^{\prime} is the only interaction (modulo physical equivalence) for which either μ^{\prime} or $v^{\prime \prime}$ is a Gibbs measure. Therefore, the renormalization-group map \mathcal{R} cannot be multi-valued.

If the image measure μ^{\prime} is Gibbsian, we say that the $R G \operatorname{map} R$ is well-defined at Φ, and we write $\mathcal{R}(\Phi)=\Phi^{\prime}$.

With a little more work we can prove that the RG map \mathcal{R} is Lipschitz continuous wherever it is well-defined:

Second fundamental theorem. Assume that the RG map \mathcal{R} is well-defined at $\Phi_{1}, \Phi_{2} \in \mathcal{B}^{1}$, with corresponding renormalized interactions $\Phi_{1}^{\prime}, \Phi_{2}^{\prime} \in \mathcal{B}^{1}$. Then $\left\|\Phi_{1}^{\prime}-\Phi_{2}^{\prime}\right\|_{B^{0} / \text { p.e. }} \leq K\left\|\Phi_{1}-\Phi_{2}\right\|_{B^{0} / \text { p.e. }}$, where "/p.e." denotes "modulo physical equivalence".

There are two norms involved in this result: the interactions must belong to B^{1} - otherwise there is no notion of Gibbs measure - but the norm for the continuity result is the B° norm.

In our opinion the eiscontiruities of $R G$ maps observed in several Monte Carlo studies [3,4,5,6] - Tuled oust by our Fundamental Theorems - are an artifact of the truncation of the renormalized Hamitonion; for more details, see [10].

4. PATHOLOGIES

Having discursed what cannot go wrong. let us see what can go wrong. In a rather wide variety of examples, the RG map R is midefraed because the image measure μ is nom-Gibsuian.

Note first thot, for any Gibbsian measure, the uniform summabinty 1 T |gis $<\infty$ impties that the direct influence of far-awoy spins musf be menk. More precisely, if we take a volume A and them a much larger wotame M \supset, the minuence of the spins outside M on observables inside A must e° ti zero as M grows, whea the intermediate spins in $M \backslash$ A are firel (do mot confuse thes with the long-range order that can develop miten the intermediate spins are not fixed). This property is called quasilocalify [14] (or دlmost-Marfonianmess [171). Al Gibbs measures are quasiocal, and the converse is almost true [18].

Therefore, a measure is now-quasiocal (hence non-Gibbsian) if there is some mechonism that transmits the information from spins far amay through intermediate regions of fixed spins. For many renormalized measures, this mechanizm is provided by the origizal spins if they undergo a phase transition. The key ingredient is the caistence of a blect-spin configeration tileazal sack that the constrained ssstem $T^{-1}\left(\omega_{\text {spenand }}^{\prime}\right)$ of original spins has severcl coeristing phases, and in addition these different phases can be selected by arz appropriate change of bock-spin bourdary conditions. In this situation, if the intermediate block spins are fixed in the configuration $\omega_{\text {special }}^{\prime}$, then by changing the block spins arbitrarily far away we can radically alter the behavior of the original spins throughout the lattice, which in turns alters the expectations for block spins close to the ori-
gin．This means that the renormalized（block－spin） measure is non－quasilocal and hence non－Gibbsian． We see that for this to happen，it is not neces－ sary for the original system to be exactly at a first－ order phase transition；it suffices that it be close enough to a first－order transition so that a suitable choice of $\omega_{\text {special }}^{\prime}$ can induce a（first－order）transi－ tion in the original－spin system．（Cr course，the single configuration $\omega_{\text {special }}^{\prime}$ has probatility zero in infinite volume；however，in our examples the argu－ ment works also for configurations that agree with $\omega_{\text {special }}^{\prime}$ in large cubes．Such sets of configu：ations have nonzero probabilities．）All the basic ideas of this argument，and many of the details，are due to Israel［9］；our contribution［10］is to complete and extend his results．

In this fashion we prove non－Gibbsianness at low temperature for the renormalized measures of the following examples［10］：（a）decimation with any spacing $b \geq 2$ ，for the lsing model in any di－ mension $d \geq 2$ ；（b）the Kadanoff transformation for the lsing model in dimension $d \geq 2$ ，with small p and arbitrary block size $b \geq 1$ ；and（c）the majority－ rule transformation with 7×7 blocks for the two－ dimensional lsing model．Moreover，in dimension $d \geq \mathbf{3}$ ，the proof of non－Gibbsianness extends to a full neighborhood $\left\{\beta>\beta_{0},|h|<\epsilon(\beta)\right\}$ of the low－ temperature part of the first－order phase－transition surface．

Though we have not yet been able to demon－ strate non－Gibbsianness for other transformations， we feel that the obstades are technical rather than fundamental．Indeed，in the light of our results，we believe that non－Gibbsianness may be the normal situation for RG maps near a first－order phase tran－ sition．We emphasize that the non－Gibbsianness discussed here shows up after only one renormal－ ization transiormation；it is not related with the iteration process itself．

The traditional belief among physicists（includ－ ing ourselves until recently）is that nearly all phys－ ically interesting measures are Gibbsian．The pro－ found message of Israel＇s pioneering work［9］，and of the examples given here［10］，is that this tra－ ditional belief is false：many physically interest－ ing measures are non－Gibbsian．In fact，we now
suspect that Gibbsianness should be aconsidered wo be the exception rather than the nille We ex－ pect that many more examples of now－Gibbsianness will be discovered in the near future，particularly in nonequilibrium statistical mechanics［19］．

This research was supported in part by WSF Grant DMS－8911273．

REFERENCES

1．K．G．Witson and 1．Kogut．Plys．Ref．12C． 7519745

 Phys．Rew．Lett 37， 639 （19763，解．E Fisner and A 致 Berker，Phys．Rew．B36， 2501 （1582）．
3．H．W．J．Blöte and R．H．Swendsen Phys Rew Letil 43， 799 （1979）．
4．C．B．Lang．Nuci．Plys．B280fFS18i 255（1097）．
5．K．Decker，A．Hasenfratz and P．Haserfratiz．解ed Plys．B295［F5211， 21 （1988）．
6．A．Gonzalez－Arroyo，M．Okswe and Y．Shisricun Phys． Rev Lett 60， 487 （1988）．
7．R．B．Gruffiths and P．A．Pearce，Phys．Rev Leet 41， 917 （1978）；R．B．Griffiths and P．A．Pearce，J．Stat Phys．20， 499 （1979），R．B．Griffiths，Physica 106A． 59 （1981）
8．A．Hasenfratz and P．Hasenfratz Nucd Phys． B295［FS21］， 1 （1988）－
9．R．B．©crael，in Raxdom Fields（Esitergon，1979），Vol－ II，edited by J．Fritz，J．L．Lebowitz，and D．Szász （North－Holland，Arnsterdam，1981）．
10．A．C．D．van Enter，R．Fernández and A．D．Sokal，to be submitted to J．Stat．Phas．
11．R．L．Dobrushin，Teor．Veroya Prim．13， 201 （1968） ［Theor．Prob．Appl．13． 197 （1968）］；O．E．Lanford III and D．Ruelle，Commun．Math．Phys．13， 194 （1969）．
12．C．Rebbi and R．H．Swendsen，Phys．Rev．B21． 4094 （1980）
13．R．B．Israel，Convenity in the Theory of Lattice Guses （Princeton Univ．Press，Princeton，N．J．，1979）．
14．H．－O．Georgii，Gibbs Mcaszres and Phase Transitions （Walter de Gruyter．Berlin－New York．1988）．
15．R．B．Griffiths and D．Ruelle，Commun．Math．Phys． 23， 169 （1971）．
16．H．A．M．Daniels and A．C．D．van Enter，Commun． Math．Phys．71， 65 （1980）；A．C．D．van Enter，Com－ mun．Math．Phys．79， 25 （1981）；A．U．Sokal，Com－ mun．Math．Phys．86， 327 （1982）；R．B．Israel，Com－ mun．Math Phys．106， 459 （1986）．
17．W．G．Sullivan，Commun．Math．Phys．33， 61 （1973）．
18．O．K．Kozlov，Probl．Inform．Trans．10． 258 （1974）．
19．J．L．Lebowitz and R．H．Schonmann，Prob．Th．Rel． Fields 77， 49 （1988）．

[^0]:
 ${ }^{\dagger}$ Speaker at the conference.
 ${ }^{\ddagger}$ Similar peculiarities, and also different ones, are reported in [8].

[^1]: ${ }^{5}$ More precisely, the flow would take place in an infinite-dimensional space of couplings, but would respect the $\sigma \rightarrow-\sigma$ symmetry; no magnetic fields, three-spin couplings or other odd interactions would arise.

 This possibility was suggested earlier, in the context of the 3 -state Potts model in three dimensions, by Blote and Swendsen [3] and with especial clarity by Rebbi and Swendsen [12, p. 4099].

