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REGULARITY PROPERTIES AND PATHOLOGIES OF POSITION-SPACE RENORMAL~ZAT~OT~- 
GROUP TRANSFORMATIONS 

Aernout C.D. van Enter 1"*, Roberto Fern~,~dez 2. and Alan D, SokaP "~ 

] lnst~nte for Theoretical Physics, Rijksnniversitei~ Groningen, GPonlruje% THE NETttERL.4NDS 
2 Theoretische Physik, E T H -  ItSnggerberg, CH-8093 Z~rich, SWITZERLAND 
3 Department of Physics, New York University, i B~shinFton Place, Ne~ York, N Y  I ~ 3 ~  CSA 

We reconsider the conceptual foundations of the renor~alization-group (RG) ~ We show that 
the RG map, defined on a suitable space of interactions, is akrays single-walued and I_ipschitz ~tinl 
on its domain of definition. This roles out a recently proposed scenado for the RG descdpt i~ of  tirst-order 
phase transitions. On the other hand, we prove in several cases that near a first-order phase transi tm 
the renormaiized measure is not a Gibbs measure for any reasonable interaction, i t  foBows that the 
conventional RG description of first-order trans~t~ns is not ~niversaily va~l. 

I. INTRODUCTION 

A principal tenet of the renormaF~afion-group 
(RG) theory of phase transitioP~ [1] is that the RG 
map, defined on a suitable space of Hamittonians, 
is smoo~h (i.e. analytic or at least several-times d~- 
ferentiable), even on phase-transition surfaces. The 
singularities assudated with critical points [1] and 
first-order phase transitions [2] are then explained 
in terms of the behavior of the RG map under infi- 
nite iteration. 

This picture of a smooth RG map has. how_ 
ever, been questioned, particularly as regards the 
behavior near a Jlrstoorder phase transition. On 
theone hand, several groups [3,4,5,6] have reported 
numerical evidence suggesting that the RG map is 
d~con~in~o~s on the first-order transition surface. 
On the other hand, Griffitbs and Pearce [7] have 
pointed out some "peculiarities" of the commonly 
used discrete-spin RG transformations (decimation, 
majority rule, etc.) in the low-temperature regimet; 
and Israel [9] showed that in at least one such case 
the expectations of renormalized observables ex- 
hibit characteristics incompatible with a Boltzmann 
prescription, i.e. the renormalized measure is n0~- 

~KhiAW Fellow. 

tSpeaker at the conference. 

$Similar peculiarities, and also different ones, 
are reported in [8]. 

G~bbsi~r~. 
We have reconsidered the conceptual founda- 

t~oas of the RG f o r m a ~ n  [I0], and have proven 
that of these proposed p a t h o l o ~ ,  the o r ~  type 
that can (and does) occur is the GrilfitlLs-Pearce- 
Israel type. We prove that the RG map, defined on 
a suitable space of  .interactions ( =  formal Ham~o- 
nians), is dmays single-valued and Lipschitz con- 
tinuons on its domain of definition. On the other 
hand, we prove, extending Israel's [9] argument, 
that in several cases the RG map is ~l-defined for a 
much more basic reason: f~e ~ c n o ~  i~c r -  
~ct~on romp fail ~o c z ~  ~oget.her.  Moreover, this 
pathology can occur in the ~icinity of  - -  not only 
at - -  a first-order phase transition: for the Ising 
model in dimension d > 3 it occurs in an open 

region { f l  > rio, IH < ~(P)}- 
Our point of view is the following: An RG 

map is defined initially as a rule (deterministic 
or stochastic) for generating a configuration w' of 
"block spins" given a configuration w of "original 
spins". Mathematically this is given by a proba- 
bility kernel T(w -~ w'). One can then define a 
probability distribution #'(w') of block spins from 
any given probability distribution F(w) of original 
spins: 

/ ( w ' )  -- ~ ( w ) T ( w  ~ w ' ) .  (1) 
w 

In other words, the RG map is easily defined as 

0920-5632/91/$3.50 © Elsevier Science Publishers B.V. (North-Holland) 



e ~ B "  

F ~  the relation be~msm a F L ~  amd 
~s con~xmam~ ( ; a ~  me~s~e is ~ by u = 
co~t  x e -e .  a l l  kem~ t l~  RG mapom tile spaoe 

H ~  is ~ f ~  by 

(3) 
However, ~ f ~ n m d ~ / ~  ~ ~ m ._rm~__-_e 
=me; m ~nfi~e v c ~ n ~ ,  the  H a n ' ~ c ~  H ( ~ )  is 

cannecdon between a fmmal H a ~  (more 
~ .  an ~ t ~ o ~ )  and ks 
~ b ~  m ~ ( ~ )  ~ m~h m~e = m p ~  P~I- 
W e  emphasize that this is not a mere mathemat~ 
col nicety:, it contains the fundamental ~ l ~ _ J  o# 
phase trans~ons, which occur ~ in infinite vol- 
ume. 

Let us give a concrete example. Cons/d~ the 
Idng model in dimension d > 2 at low temperature 
(J~ >>/~c) and zero-magnetic field. At such a point 
there are two pure phases (=  extrema| translation- 
invariant infinite-volume Gibbs measures), p+ and 

p_. These phases are characterized by a Large 
magnetization -t-Mo and a small correlation length 
c After a block-spin transformation T. such as 
ma~ority-rule, the image measures p~: will have a 
yet larger magnetization ±M~ and a yet smaller 
correlation length ~'. We now ask: These image 
measures p'~ are typical of what kind of Hamilto- 
nian? 

The conventional scenario [2] is that the RG 
flow is toward lower temperatures aZo~g ~/~c/z = 0 
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~c~;: m th~ case t~e two ~mage measures p~ wo~icl 

er~t ~ wa~ suggested by Decker, Hasew~tz 
and Hasem~atz [5]~ m which H a m ~ n s  H with 
an ~ ~ (~esp. negative) m~Kne~ 
field ~ wc¢~ get reaped by a ~ngle RG step to 
r ~  ~ ~  H ~ having a s t~ . Jy  po~ 
~,~ (~- ~ ~,.-~) m.~m~ ~ ~"~ ~- 
d~erc-~e~ ~ ~ = 0 ~e ~ma~e measm.es ~ ~ 

s~Ip~, be tJ~ scma~o~ tke RG map R: ~ l ~  be g/a- 

gee, a~d m ~ ~ e t l k a t  ~e.S B o e k l  
are oom~mt  mtb tike m idea ,J~t ~mlp~ 

mder I~e RG mam. 

fm~lL Om the o i ler  Iraqi. m at le~t  s~me ~ms  

2- GENERAL FRAMEWORK 

z" c ~ a  by a ~ spaoe ~ ~ 
comes e q i m ~  ~ a p i~k~ ly  m ~ r ~  m d ~  

(S~ = ~ . # )  to a,  ~ (or . - ~ , ~ - ~ -  _~) , ~  

al~T~Ly kernel; ( T 2 )  T c a r r i e s  " " - 

measures on ~ into t r a ~ m a r i a n t  measures 

§More prec~iy, the flow would take place in an 
infinite-dimensional space of coupEngs, but would 
respect the ¢r --~ --or symmetry;, no magnetic 
fields, three-spin couplings or other ~ interac- 
tions would arise. 

IThis possil~T~y was suggested ean~r, in the 
context of the 3-state Putts model in three dimen- 
sions, by BI6te and Swendsen [3] and with especial 
clarity by Rebbi and Swendsen [12, p. 4099]. 
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on ~'; and (T3) T is strictly local in ~ositio,~ space, 
that is, there exists a number ] (  < oo (v~lume 
compression factor) such that the image spt~s in 
each region A' depend only on the original spins in 
a certain region A with IAI < K1A'I. This set-up 
includes all of  the usual deterministic or stochas- 
tic real-space renormalization ~chemes: decima- 
tion, majority rule and Kadanoff transformations. 
It excludes, due to the strict locality requirement, 
most momentum-space renormalization maps (but 
we conjectut'c that our results extend also to such 
maps). 

The map/~ ~ / ~ '  induced by T is always well- 
defined; the problems arise when trying to complete 
(2) to define the renormatization-group map "R. on 
Hamiltonians, We consider only a smgte applica- 
tion of the RG map, so the semigroup property o f  
the "renormalization (semi)group" plays no role for 
us. 

Let us introduce some needed notions o f  
infinite-volume statistical mechanics [13,14]. To 
make rigorous the idea o f  "formal Hamiltonian" 
(collection of  one-body terms, two-body terms, 
etc.), we define an interact ion to  be a family 

= (~a )  of  functions C~A: ~ --~ !;I, such that  
for each finite A C £. the function c~ A depends 
only on the spins in the subset A. The interactions 
are assumed to be tra~laf~ion-invariauL As in a 
renormalization procedure interactions proliferate, 
we must allow interactions among arbitrarily many 
spins simultaneously, and therefore we must impose 
certain summability conditions: We consider the 
(Banach) space B] o f  translation-invari,~nt contin- 
uous interactions with norm 

II¢11~1 -- ~ IICAII~ < co ,  (4) 
A~0 

where I I ~ A I ~  = s.p~ I ~ ( ~ ) l -  Condition (4) en- 

sures that for each j~tz~z~e voh~me A and bound- 
ary condition T, there is a well-defined Hamiltonian 
H~,. and Boltzmann-Gibbs distribution ~r~,.. The 
infinite-volume Gibbs measures for interaction c~ 
are then defined [11] to be those measures whose 
conditional pTobabilif~ies on finite volumes are ex- 
actly the measures ~r~,~. 

Some remarks are in order. First, we notice that 
the requirement (4) makes our results applicable, 

for practical purposes, only to systems o f  bounded 
spins. Second, the same Hami|tonian (oF, mote 
precisely, the same conditional probabilities) can ~e 
expressed via different interactions. We s~o~td not 
distinguish between such ir,~eract~ons, w~ich are 
therefore called physically/ equivalent. V~tth th~  
identification Griffiths and Ruelle {15] have proven 
that the downward vertical arrc~/in (2) cannot be 
multi-valued. Third, the space ~ d~finecl by the 
-¢eaker norm 

A~O 

arises when the theory is constructed from a varia- 
tional prin6ple [13,14]. This space is much larger 
than B 1 (~t admits interactions decaying more 
dowiy with the number o f  bodies), and exhibits 
many unphysica| features |13.16]. We contend that 
E z is the largest physically reasonable space o f  in- 
teractions. 

3. REGULARITY PROPERTIES 
Let us go back to the example o f  the Ising 

model. Suppose we are given a measure/L with 
a large positive magnetization and a small (but 
nonzero) correlation length; does this measure 
come from a Hamilton;an H"  with ~ large and 
h = 0, or from a Hamiltonian with f l  not so large 
(pos~bly even small) and h large and positive? 

One way to decide is to  look to the large- 
deviation properties of the measure p ' .  Let A be a 
large cubical box of side L. and let ~ A  -- ~_~=eA a~ 
be the total spin in A. Clearly there is an over- 
whelming probability that  Jt~^ will be positive; but 
how rare is it to  have J~^  negative? I f  p '  is a 
Gibbs measure for some Hamiltonian with h > 0, 
then the event J~A < 0 is suppressed by the bulk 
magnetic field: 

Prob~,(J~^ < 0) ~ e -°(L~) . (6) 

On the other hand, i f  # '  is a Gibbs measure for 
some Hamiltonian with h = 0 and # > /~c, then 
the event J~/A < 0 is suppressed only by a surface 
energy: 

Prob.,(.N~^ < 0) ~ c -°(~''~-') . (7) 



51 

naf~os for the RG ~ _  In th~ slar~J~g measure/~+ 
the occurr~a~e 04a  ~ g e  region w~th negative to- 

tal sp~n ~s s u p p r ~  ou~  F ~  e ' - C < ~ ;  r o ~ y  
speaki~g~ tim raea~re  p+ qmo~s" that  /t is de- 
generate ~/th the  m~asuce p_.  ~ the~ m Lfie 
b lock-~n  m e a ~ e  p~÷o t b ~ e  must  also be a ~ o ~  
b ~ y  ;~ ~ - ~ - ~  o f ~ g  a negathee total spin 
(~ce a net .eguti~ o~¢i.,4 s~ /mp~es ,  with bgh 
m~ab/lity~ a net  . e g a 6 ~  I / i ~  s ~ . ) .  Since t r ~  
coa~rad/cts (6). m condude tha t  t / .  a ~ a ~ t  be t he  
C~/bbs measure of a Ham~ltomn ~d~  s * J k ~  pos/- 
f ive magnetic field. Picturesquely, the image 
sure/~÷ "remembers" that  ill ~ f rom ;m o t ~ m ~  
Ham~ltc, r'oan H with c n ~ n g  phases_ - rhere~e.  
the RG map ~ e o t  be muld-vab~L 

It is a m l a t i ~  s lm~ step flora these katuR/~e 
ideas to a f i gu re s  proof for a g~a~rai system. i h e  
resuk is [10]: 

F i r s t  f u i ~ a m e n t a l  t h e o m m o  If p 
and u arc Gibbs measures far the  same 
interaction ~ G. B~. then e~L~r t im renm - 
malized m e a s u r e s / / a n d  ~ arc both non- 
Gibbsian. or rise there exists an interac- 
tion ~ ~ B ~ far which both /in and 
are Gibbs measures. In the latter cas~. 
~ '  is the o ~ ,  interaction (modulo phys- 
ical equivalence) for  which either / /  or 
u '  is a Gibbs measure. Tberdore. the  
renormalization-group map R. cannot be 
multi-valued. 

If the  image m e a s u r e / / i s  Gibbsian. we say that  
the RG map ~P~ is welbdefined at  ~ ,  and we write 
g ( ~ )  = ~' .  

v~r~h a little more work we can prove that  the 
RG map 7?. is Upschitz continuous ~here~er /4 /s 

~eU-defined : 

S e c o n d  f u n d a m e n t a l  t h e o r e m .  As- 
sume that  the RG map ~Z is well-defined 
at ¢~, ¢2 ~ / / 1  with corresponding renor- 

t t ~1. malized interactions ~ ,  ~ ~ Then 

I1~ - ~ l l ~ / p 0  -< g I 1 ~ -  ¢zll~0/p . . . .  
where "/p.e." denotes "modulo physical 
equivalence". 

T~ere are two norms in~cdved in this resuh: the 
ir~cerac~/ocls must b e k ~  to ~ - -  ot~erw~e the~e 
is no n ~ n  of  G~blys measure - -  but the r~rm for 
the c~n t inu~ res*,dt is the ~ norm. 

In our o ~ n i ~  the ~isco~tmu~t~s o f  RG maps 
m se~wa~ Moore Carlo stud/cs [3,4~5,6] 

__ ~ , r ~  ~ t  by our Fundamental Theorems ~ are 
an arl~act ¢R the t ~ u ~  d the renorma~zed 
H a m P , ~ ;  fo~ m o ~  a¢,.~.,  see [101. 

4_ PATHOLOGIES 

see w h ~  ~ go w m ~  I~ a ~ ther  ~ e  w 6 e ~  a~ 
e ~ d e s ,  ~ RG mapgZ is ~ r - ~ f ~ / ~ t i ~  
image meas~e ~ is ~ - G ~ k ~ m .  

Pb~te f r e t  t tB~  for  amy ~ meas~e, the 

/~-ed i d e e m ~  ~r  f a f - . m ~  sp/m m o ~  be ~ I L  
Mare p ,~ '~ l y ,  J we take a m i m ~  A aml d i m  a 
much t w ~  ~g~mJe M ~ A, the ~ b m ~  d tbe 
s p m  o m t s ~  M on ~ ~ A ~ ~ 

in M ~ A are fLzd (do m~ cxmfuse flfis ~ i~  tbe 
io~oran~ order ~ c a  &;..~.~. ~ the im,~r- 
m e ~ , , ~ s p ~ s ~ r e , u a ~  " T l ~ p m p e ~ i s ~  

pq (m ~ m . t - ~  pzD 
A I G ~ ~ - e ~ . ~ d t b e c o u v w ~  

n o n - G a ~ n )  i f  there ~ some ~ 
t r ansm~  the h~mmat~n f rem spins tar a ~  
through in tmmed~e  regiam d fms l  ~ Far 
m a w / ~ ~ !  n ~ m ~ s ,  th/s ~ 
prodded bytbe ~ s p ~  • d ~  .nder~o a 
phase transition. The key i n ~  is the  

teace of a b / c ~ - ~  ~ J ~  

appro~ate c b ~ e  of block-s~ ~_~J_~,~ wadi- 
t / o ~ .  In this situation, if the  inte.nndiate block 
spins are fixed in the  configuration w ~ ,  then 
by changing the  block spins arbRran~ far away 
we can radically alter the behavior o f  the original 
spins throughout the lattice, which in turns alters 
the expectations for block spins close to  the off- 
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gin. This means that the ~enormalized (block-spin) 
measure is non-quas~local ~md hence non-Gibbsian. 
We see that for this to happen, it is not neces- 
sary for the original system to ~e exact|y aI a first- 
order phase transition; it suffices that it be e~0se 
eno~,y~, to a ~rst-order transition ~o that a suitable 
choice of  c~'~e~ 1 can induce a (first-order) transi- 
tion in the original-spin system. (C~ course, the 
single configuration ~ has probaL;lity zero in 
infinite volume; however, in our examples the argu- 
ment works also for configurations that ageee with 
co~ed= I in large cubes. Such sets of  coBfigu:ations 
have nonzero probabilities.) AJI the basic ideas of  

this argument, and many of  the details, are due to 
Israel [9]; our contribution [10] is to c~mp|ete and 
extend bis resu|ts. 

In this fashion we prove non-Gibbsianness at 
low temperature  for the  renormalized measures of  

the following examples |10]: (a)  decimation with 

any spacing b _> 2, for the  Ising model in any  di- 

mension d > 2; (b)  the  Kadanof/ t ransformatkm for 

the Ising model in d imendon d > 2, with ~ma~I p 
and arbitrary block size b > 1; and (c) the  majority- 

rule transformation with 7 x 7 blocks for the two- 
dimensional k ing  model.  Moreover, in dimension 

d ~ 3, the  proof of non-Gibbsianness extends  t o  a 

full neighborhood { p  > flo, I~I < 4 0 ) }  of  the 
temperature part of  the first-order phase-transition 
surface. 

Though we have not yet been able to demon- 
strate non-Gibbsianness for other transformations, 
we feel that the obstacles are technical rather than 
fundamental. Indeed, in the light of  our results, we 
believe that non-Gibbsianness may be the n o r m a l  
situation for RG maps near a first-order phase tran- 
sition. We emphasize that the non-Gibbsianness 
discussed here shows up after on/y one renormal- 
ization trans,~ormation; it is not related with the 
iteration process itself. 

The traditional belief among physicists (includ- 
ing ourselves until recently) is that nearly all phys- 
ically interesting measures are Gibbsian. The pro- 
found message of Israel's pioneering work [9], and 
of the examples given here [10], is that this tra- 
ditional belief is false: ~ n 9  phonically i n t e ~ t -  

~ng me~sure~ ere non-Gibb~i~n. In fact, we now 

suspect that Gibbsianness should ~e co~s~d~ed t~ 
be the exception rather than the ~ile. We e×- 
pect that many more e~mpIes of  non-Gibb~a~n~s 
will be discovered in the near future, T~a~Jr~u~ar~y ~n 
nonequiiibfium statistical mechanics ~19]. 

This research was supported in pa~t ~" ~S~ 
Grant DMS-ag11273. 
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