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REGULARITY PROPERTIES AND PATHOLOGIES OF POSITION-SPACE RENORMALIZATION-

GROUP TRANSFORMATIONS
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We reconsider the conceptual foundations of the renormalization-group {RG) formalism. We show that
the RG map, defined on a suitable space of interactions, is always single-valued and Lipschitz continuous
on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the other hand, we prove in sevaral cases that near a3 first-order phase transition
the renormalized measure is not 2 Gibbs measure for any reasonable interaction. I follows that the
conventional RG description of first-order transitions is not universafly valid.

1. INTRODUCTION

A principal tenet of the renormalization-group
{RG) theory of phase transitions {1] is that the RG
map, defined on a suitable space of Hamiltonians,
is smooth (i.e. analytic or at least several-times dif-
ferentiable), even on phase-transition surfaces. The
singularities associated with critical points {1] and
first-order phase transitions [2] are then explained
in terms of the behavior of the RG map under infi-
nite iteration.

This picture of a smooth RG map has, how-
ever, been questioned, particularly as regards the
behavior near a first-order phase transition. On
the one hand, several groups [3.4,5.6] have reported
numerical evidence suggesting that the RG map is
discontinuous on the first-order transition surface.
On the other hand, Griffiths and Pearce [7] have
pointed out some “peculiarities” of the commonly
used discrete-spin RG transformations (decimation,
majority rule, etc.) in the low-temperature regimet;
and Israel [9] showed that in at least one such case
the expectations of renormalized observables ex-
hibit characteristics incompatible with a Boltzmann
prescription, i.e. the renormalized measure is non-
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Similar peculiarities, and also different ones,
are reported in [8].

Gibbsiar.

We have reconsidered the conreptual founda-
tons of the RG formalism [10], and have proven
that of these proposed pathologies, the only type
that can (and does) occur is the Griffiths-Pearce-
israel type. We prove that the RG map, defined on
a suitable space of interactions (= formal Hamilto-
nians), is alwaeys single-valued and Lipschitz con-
tinuous on its domain of definition. On the other
hand, we prove, extending lsrael’s [9] argument,
that in several cases the RG map is ill-defined for a
much more basic reason: the renormalized inter-
action may fail to ezist altogether. Moreover, this
pathology can occur in the vicinity of — not only
at — a first-order phase transition: for the Ising
model in dimension d > 3 it occurs in an open
region {8 > fo, [k] < «(B)}-

Our point of view is the following: An RG
map is defined initially as a rule (deterministic
or stochastic) for generating a configuration w' of
“block spins” given a configuration w of “original
spins”. Mathematically this is given by a proba-
bility kernel T(w — w’). One can then define a
probability distribution p'(w’) of block spins from
any given probability distribution p(w) of original
spins:

HW) = Tu@)Tw—o). (1)

In other words, the RG map is easily defined as
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2z mmap fromn memszres o megswres.  On the
other hand, most applcations of the renormaliza-
tiom group zssurve fand nesd) that the RG map s
defimed a5 3 map from Homalionizns to Bomailio-
mams. Ihat m, @ & chosen as the Gibbs measore
for 2 statistical-mechamcal system with Hamilto-
mian H, and i/ B ewvmed to be the Gbbs mes-
sure for 2 systesn with some Hamiltonian H". Ths
= taken to define 26 RG map R on some surtable
space of Hamsltosians, by the diagram

P S

7 i (2}

j; N -
Formally the relation between 2 Hamdtonian and
its corresponding Gibbs measure = gven by g =
const X &7, and hence the RG map on the space
of Hamiltonians i defined formelly by

H) = —log [g T T w’}] + comst .

3}
However, this formuls is valid only in finile vol-
ume; in infinite volume, the Hamitonian H(w) s
fi-defined (its value & almost surely 1oc), and the
connection between a formal Hamitonan {more
precisely, an interaction) and its corresponding
Gibbs measure{s) is much more complicated [11].
We emphasize that this is not a mere mathemati-
cal nicety: it contains the fundamental physics of
phase transitions, which occur ealy in infinite vol-
ume.

Let us give a concrete example. (onsider the
Ising model in dimension d > 2 at low temperature
(B > B.) and zero.magnetic field. At such a point
there are two pure phases (= extrema! translation-
invanant infinite-volume Gibbs measures), g, and
p—. These phases are characterized by a farge
magnetization £ My and a small correlation length
£, After a block-spin transformation T, such as
majority-rule, the image measures g/ will have a
yet larger magretization =My and a yet smaller
correlation length £. We now ask: These image
measures py are typical of what kind of Hamilto-
nian?

The conventional scenario [2] is that the RG
flow is toward lower temperatures along the h =0
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Gine®; in this case the two image measures ¢/, wouid
be Gibbsian for the same Hamidtonian H’. A differ-
ent passibifity was suggested by Decker, Hasenfratz
and Hasenfratz [5], in which Hamiltonians I with
an infinitesimal positive {resp. negative} magnetic
field /. would get mapped by a single RG step to
rencrmalized Hamiltonians H' having a strictly pos-
itive (resp._ strictly pegative) magnetic field 4. rur-
thermore, ef i = (i the image measures (), would
be Ghbstan for different Hamiltonians H, having
{among other couphings} magnetic fields of different
sign. [ this scenario, the RG map R would be dis-
a5 one 2pproaches the phase-tramsition
fine, and malti-ralued on that ke ¥ Both scenarics
under the RG map._

cxnznot occur: the RG map R & deays snge-
valzed and Lipschitz contmuces whereser it is de-
fined. On the other hand, m at least some cses
[9.10] the first scecsanio is sot sekid etther, because
the Bamilionian B fuils to cxist af off. That s,
il ean occnr thel the image mensxre i/ is not
Gibks mensxre for any ressonable Hemiltonian.

e

2. GENERAL FRAMEWORK

Cur results apply io systems on a battice £ =
2° characterized by a single-spin space Slg, which
comes equipped with a physically natural smgle-
space ) is the Cartesian product ()° = fw =
(wr)ree | we € Qo). We consider “repormaiiza-
tion maps™ T from an original (or object) system
(2 = 9%, 1°) to an image (or rerormalized) sys-
tm\u—ﬂ",":;z"')smhthat' (Tl)Tsaprob—
abifity kernel; (T2) T carries translation-invariant
measures on £ into translation-invaniant measures

$More precisely, the flow would take place in an
infinite-dimensional space of couplings, but would
respect the 0 — —o symmetry; no magnetic
fields, three-spin couplings or other odd interac-
tions would arise.

TThis possibility was suggested earfier, in the
context of the 3-state Potts model in three dimen-
sions, by Blote and Swendsen [3] and with especial
clarity by Rebbi and Swendsen {12, p. 4099].
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on Q; and (T3) T is strictly local in position space,
that is, there exists a number K < oo (wlume
compression factor) such that the image spis in
each region A’ depend only on the original spins in
a certain region A with |A| < K[A'|. This set-uo
includes all of the usual deterministic or stochas-
tic real-space renormalization schemes: decima-
tion, majority rule and Kadanoff transformations.
It excludes, due to the strict locality requirement,
most momentum-space renormalization maps {but
we conjecture that our results extend also to such
maps).

The map g s ' induced by T is always well-
defined; the problems arise when trying to complete
(2) to define the renormalization-group map R on
Hamiltonians. We consider only a single applica-
tion of the RG map, so the semigroup property of
the “renormalization (semi)group” plays no role for
us.

Let us introduce some needed notions of
infinite-volume statistical mechanics [13,14]. To
make rigorous the idea of “formal Hamiltonian”
(collection of one-body terms, two-body terms,
etc.), we define an inieraciion to be a family
® = (@4) of functions $4: Q2 — R, such that
for each finite A C L, the function &4 depends
only on the spins in the subset A. The interactions
are assumed to be translalion-invariant. Asin a
renormalization procedure interactions proliferate,
we must allow interactions among arbitrarily many
spins stmultaneously, and therefore we must impose
certain summability conditions: We consider the
(Banach) space B? of translation-invariant contin-
uous interactions with norm

[[@lls: = > 124l < o0, (O]
A30

where [[@4]|c = sup, |®4{w)]. Condition (4) en-
sures that for each finite volume A and bound-
ary condition 7, there is a well-defined Hamiltonian
Hg_ and Boltzmann-Gibbs distribution 7§ ,. The
infinite-volume Gibbs measures for interaction &
are then defined [11] to be those measures whose
conditional probabilities on finite volumes are ex-
actly the measures 73,

Some remarks are in order. First, we notice that
the requirement (4) makes our results applicable,

for practical purposes, only to systems of bounded
spins. Second, the same Hamiltonizn (or, more
precisely, the same conditionai probabilities) can be
expressed via different interactions. We should not
distinguish between such inzeractions, which are
therefore called physically equivaleni. With this
dentification Griffiths and Ruelle {15} have proven
that the downward vertical arrow in {2) cannot be
multi-valued. Third, the space B® defined by the

weaker norm

[l = 3147 Bl < < (5)
30

arises when the theory is constructed from a vana-
tional principle [13,14]. This space is much larger
than B! (it admits interactions decaying more
slowly with the number of bodies), and exhibits
many unphysical features {13,16]. We contend that
B! is the largest physically reasonable space of in-
teractions.

3. REGULARITY PROPERTIES

Let us go back to the example of the lsing
model. Suppose we are given a measure g with
a large positive magnetization and a small (but
nonzero) correlation length; does this measure
come from a Hamiltonian H’ with 3 large and
h = 0, or from a Hamiltonian with 8 not so large
{possibly even small) and & large and positive?

One way to decide is to look to the large-
deviation properties of the measure u'. Let A be a
large cubical box of side L, and let My =3, 0.
be the total spin in A. Clearly there is an over-
whelming probability that M, will be positive; but
how rare is it to have M, negative? If y' is a
Gibbs measure for some Hamiltonian with i > 0,
then the event M, < 0 is suppressed by the bulk
magnetic field:

Prob,(Mj < 0) ~ e~ | {6)

On the other hand, if y' is a Gibbs measure for
some Hamiltonian with o = 0 and 8 > 5., then
the event M, < 0 is suppressed only by a surface
energy:

Prob(My < 0) ~ e 0" (N
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it ts now easy to decide between the two sce-
narios for the RG flow. In the starting measure g,
the occarrence of a large region with negative to-
tal spin is suppressed only fke e~} roughly
speaking, the measure g, “knows”™ that o 15 de-
generate wiath the messure p_. But then m the
Block-spin measure g7, . there must also be a proba-
bility 2 %457} of obsarving 3 negative total spin
{since a net negative oniginal spin imples, with high
probability. a net negative block spin). Since this
contradicts {6}, we condade that i, cannof be the
Gibbs measure of a Hamiitonzan wath strictly pose
tive magnetic field. Picturesquely, the image mea-
sure g, “remembers” that it arose from an orgmal
Hamiltonian H with coexsting phases. Therefore,
the RG map cannrot be multi-valued.

it s a relatively short step from these intutive
ideas to a rigorous proof for 2 general system. The
result is [10}:

First fandamental theorem. i g
and » are Gibbs measures for the same
interaction ® € B*, then either the renor-
malized measures i’ and #’ aze both non-
Gibbsian, or else there exists an interac-
tion ¥ € B! for which both g’ and +/
are Gibbs measures. In the latter case,
@' is the only interaction (modulo phys-
ical equivalence) for which either y/ or
¥ is a Gibbs measure. Therefore, the
renormalization-group map R cannot be
multi-valued.

If the image measure g’ is Gibbsian, we say that
the RG map R is well-defined at @, and we write
R(®) =¥

With a little more work we can prove that the
RG map R is Lipschitz continuous wherever # is
well-defined:

Second fundamental theorem. As-
sume that the RG map R is well-defined
at ®;, P, € B, with corresponding renor-
malized interactions &4,®, € B'. Then
@] — Bollzospe. < K [[@1— Pallsospe.»
where “/p.e.” denotes “modulo physical
equivalence”.

There are two norms mvolved in this result: the
interactions must belong to B' — otherwise there
is no notion of Gibbs measure — but the norm for
the continuity result is the B” norm.

In our opinion the discontinuities of RG maps
observed in several Monte Cardo studies 3,456}
— ruled out by our Fundamental Theorems — are
an artifact of the truncation of the renormalized
Hamiltonian; for more details, see [10].

4 PATHOLOGIES

Having discassed what cannot go wrong, et us
see what can go wrong. In 2 rather wade variety of
examples, the RG map R s wndefined because the
image measure ' 5 ron-Gibbsian.

Kote first that, for any Gibbsian measore, the
oniforrn: summability [$fx < oc wnphes that the
direct miluence of fas-awmay spms most be wesk.
More precisely, # we take 3 volume A and thes a
much lasger volame M O A, the mivence of the
spns outside M on observables mside A most po
ic zeso as M grows, when the mteymediate spies
in M\ A are fixed (do vot confuse thes with the
long-range order that can develop when the aster-
mediate spins are not fixed). This property is called
quasilocality [14] {or almost-Markovianmess [17]).
All Gibbs measures are quasiocal, and the coaverse
is almost true [18].

Thesefore, 3 measure is non-quasiocal (bence
non-Gibbsian) if there is some mechansm that
transmits the information from spmns far away
through intermediate regions of fixed spins. For
many renormalized measures, this mechanism s
provided by the original spins if they undergo a
phase transition. The key ingredient s the exis-
tence of a bleck-spin configuration o ., such
that the constratned system T (.1} of origi-
nal spins has several coexisting phases, and tn ad-
dition these different phases can be selected by an
appropriate change of block-spin bourdary condi-
tions. In this situation, i the intermediate block
spins are fixed in the configuration w7 .., then
by changing the block spins arbitranly far away
we can radically alter the behavior of the original
spins throughout the lattice, which in tumns alters
the expectations for block spins close to the ori-
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gin. This means that the renormalized (block-spin})
measure is non-quasilocal and hence non-Gibbsian.
We see that for this to happen, it is not neces-
sary for the original system to e exactly at a first-
order phase transition; it suffices that it be close
enough to a first-order transition o that a suitable
choice of w),,;,; can induce a (first-order) transi-
tion in the original-spin system. (Cf course, the
single configuration W/, ;. has probatility zero in
infinite volume; however, in our examples the argu-
ment works also for configurations that agree with
Whperiar in large cubes. Such sets of configurations
have nonzero probabilities.) All the basic ideas of
this argument, and many of the details, are due to
Israel [9]; our contribution {10] is to complete and
extend his results.

In this fashion we prove non-Gibbsianness at
low temperature for the renormalized measures of
the following examples [10]: (a) decimation with
any spacing b > 2, for the Ising mode! in any di-
mension d > 2; {b) the Kadanoff transformation for
the Ising model in dimension d > 2, with smaell p
and arbitrary block size & > 1; and {c) the majority-
rule transformation with 7 x 7 blocks for the two-
dimensional lsing model. Moreover, in dimension
d > 3, the proof of non-Gibbsianness extends to a
full neighborhocd {# > fo, |h| < &(8)} of the low-
temperature part of the first-order phase-transition
surface.

Though we have not yet been able to demon-
strate non-Gibbsianness for other transformations,
we feel that the obstacles are technical rather than
fundamental. Indeed, in the light of our results, we
believe that non-Gibbstanness may be the normal
situation for RG maps near a first-order phase tran-
sition. We emphasize that the non-Gibbsianness
discussed here shows up after only one renormal-
ization transformation; it is not related with the
iteration process itself.

The traditional belief among physicists (includ-
ing ourselves until recently) is that nearly all phys-
ically interesting measures are Gibbsian. The pro-
found message of Israel’s pioneering work [9], and
of the examples given here [10], is that this tra-
ditional belief is false: many physically interest-
ing measures are non-Gibbsian. In fact, we now

suspect that Gibbsianness should be considered to
be the exception rather than the rule. We ex-
pect that many more examples of non-Gibbsianness
will be discovered in the near future, particalarly in
nonequilibrium statistical mechanics {18,

This research was supported in part by HSF
Grant DMS-8911273.
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