198 research outputs found

    Comparative study of Selva and Camarosa strawberries for the commercial market

    Get PDF
    Selva and Camarosa strawberry varieties were characterized chemically and physically. The importance of keeping the stem until processing, the influence of different transport periods under refrigerated conditions, the effects of freezing and exposure to air of damaged surfaces were evaluated. During freezing, losses of ascorbic acid, sucrose, fructose and glucose were reported for both varieties. However, keeping the stem intact minimizes the losses of ascorbic acid in frozen fruits. The exposure to air of cut surfaces affects ascorbic acid content of fresh fruits, with the highest losses reported in Camarosa. Selva showed properties important for commercial use, as compared to Camarosa, with regard to a higher resistance to thawing and higher contents of total phenolics, total protein, and ascorbic acid

    The effect of yeast on the anthocyanin characteristics of fermented model solutions

    Get PDF
    The sensory quality of red wines is basically determined by the colour, which depends on the amount and on the evolution of anthocyanins and other phenolic compounds extracting from the berries into the wine during wine-making. The anthocyanin-monomers are responsible for the development of the red colour, and their acylated derivatives provide stability for the colour of the wines. The anthocyanin profile of wines is affected by several factors: the grape variety, the conditions during wine-making, and also the yeast culture used for the fermentation. In our experiments a self-compiled model solution was fermented by spontaneous fermentation, as well as by four commercial yeasts under laboratory conditions. After fermentation total polyphenolics, anthocyanins, anthocyanin monomer profile, colour intensity, hue, and the ratio of polymeric anthocyanins were studied. Our results show that the spontaneous yeast fermentation resulted in a higher anthocyanin concentration in the fermented model solution, but the commercial yeast strains provided a more advantageous colour characteristic compared to the spontaneous fermentation. After the spontaneous fermentation less sediment was left than in the commercial yeast fermented samples

    Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties

    Get PDF
    The ripeness of grapes at the harvest time is one of the most important parameters for obtaining high quality red wines. Traditionally the decision of harvesting is to be taken only after analysing sugar concentration, titratable acidity and pH of the grape juice (technological maturity). However, these parameters only provide information about the pulp ripeness and overlook the real degree of skins and seeds maturities (phenolic maturity). Both maturities, technological and phenolic, are not simultaneously reached, on the contrary they tend to separate depending on several factors: grape variety, cultivar, adverse weather conditions, soil, water availability and cultural practices. Besides, this divergence is increasing as a consequence of the climate change (larger quantities of CO2, less rain, and higher temperatures). 247 samples collected in vineyards representative of the qualified designation of origin Rioja from 2007 to 2011 have been analysed. Samples contain the four grape varieties usual in the elaboration of Rioja wines (‘tempranillo’, ‘garnacha’, ‘mazuelo’ and ‘graciano’). The present study is the first systematic investigation on the maturity of grapes that includes the organoleptic evaluation of the degree of grapes maturity (sugars/acidity maturity, aromatic maturity of the pulp, aromatic maturity of the skins and tannins maturity) together with the values of the physicochemical parameters (probable alcohol degree, total acidity, pH, malic acid, K, total index polyphenolics, anthocyans, absorbances at 420, 520 and 620 nm, colour index and tartaric acid) determined over the same samples. A varimax rotation of the latent variables of a PLS model between the physicochemical variables and the mean of four sensory variables allows identifying both maturities. Besides, the position of the samples in the first plane defines the effect that the different factors exert on both phenolic and technological maturitiesMinisterio de Economía y Competitividad (CTQ2011-26022) and Junta de Castilla y León (BU108A11-2

    Analytical methods in wineries: is it time to change?

    Get PDF
    A review of the methods for the most common parameters determined in wine—namely, ethanol, sulfur dioxide, reducing sugars, polyphenols, organic acids, total and volatile acidity, iron, soluble solids, pH, and color—reported in the last 10 years is presented here. The definition of the given parameter, official and usual methods in wineries appear at the beginning of each section, followed by the methods reported in the last decade divided into discontinuous and continuous methods, the latter also are grouped in nonchromatographic and chromatographic methods because of the typical characteristics of each subgroup. A critical comparison between continuous and discontinuous methods for the given parameter ends each section. Tables summarizing the features of the methods and a conclusions section may help users to select the most appropriate method and also to know the state-of-the-art of analytical methods in this area

    A Metabolomic Approach to the Study of Wine Micro-Oxygenation

    Get PDF
    Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels) and iron (two levels) were applied to Sangiovese wine, before and after malolactic fermentation

    Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine

    Get PDF
    While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
    corecore