173 research outputs found

    Identification of transcription regulation associated proteins in plants and stramenopiles

    Get PDF
    The generation of biodiversity is tied to the evolution and re-wiring of gene regulatory networks (GRNs). One component of these GRN are transcription factors and other transcriptional regulators. We have devised a pipeline for the identification of TFs and TRs, exploiting the domain architecture of these proteins. Currently we have a set of rules, representing 138 proteins families, that we have applied to the identification of ~20 different plant species and several species of Stramenopiles, where important plant pathogens are found. Results for plant species are available at http://plntfdb.uniandes.edu.co/; we are now developing a newer interface for Stramenopiles

    Historia evolutiva del grupo previamente denominado protistas usando una aproximación filogenómica

    Get PDF
    La falta de organización en linajes discretos en la filogenia y la taxonomía del grupo anteriormente llamado protistas ha retrasado la comprensión de la historia evolutiva del grupo y la comparación de rasgos entre los miembros del mismo. En este estudio usamos una aproximación filogenómica para plantear hipótesis filogenéticas del grupo mencionado. Usamos una estrategia basada en el agrupamiento automático de ortólogos (OrthoMCL) para recuperar 72 grupos de ortólogos de 73 especies. Un árbol obtenido con el método de maxima verosimilitud fue estimado a partir de una supermatriz de datos. De manera general obtuvimos inferencias filogenéticas consistentes con publicaciones previas pero se observaron algunos patrones de ramificación inesperados con valores bajos de soporte. A pesar de la gran cantidad de genes de los grupos Opisthokonta, este clado aparece polifilético. No pudimos demostrar la monofilia de Excavata, muy probablemente debido a artefactos de atracción de ramas largas. Un segundo conjunto de datos fue construido luego de eliminar los sitios de rápida evolución/saturados. El test de Shimodaira-Hasegawa se calculó con el fin de verificar si nuestros datos e inferencias filogenéticas controvertían patrones de ramificación reportados previamente. Los resultados de los tests sugieren que las topologías propuestas en estudios previos no son significativamente mejores que las topologías propuestas en este estudio. Nuevas relaciones fueron encontradas dentro de los Opisthokonta, para dos especies, Thecamonas trahens y Capsaspora owczarzaki. Adicionalmente, algunas posiciones filogenéticas controversiales se encontraron para varios grupos eucariotas con nuestra aproximación filogenómica. En el estudio se discuten las relaciones de los grupos Alveolata y Stramenopila, siendo este ultimo grupo de especial interés para nuestro grupo de investigación.The lack of organisation of monophyletic lineages in the phylogeny and taxonomy of the group formerly known as protists has precluded the understanding of the group's evolutionary history and trait comparison among members of the group. We used a phylogenomic approach to establish phylogenetic hypotheses of this group of organisms. We used an automatic orthologous clustering (OrthoMCL)-based strategy to recover 72 clusters of orthologues from 73 eukaryotic species. A maximum likelihood tree was inferred from the supermatrix. Overall, we obtained consistent inferences with previous published ones, but some unexpected phylogenetic relationships were poorly supported. Despite the large quantity of genes from the Opisthokonta groups, this clade was recovered as polyphyletic. We failed to recover a monophyletic Excavata group, most likely because of long- branch attraction artefacts. A second dataset was constructed after removing the fast-evolving/saturated sites, and a Shimodaira-Hasegawa test was performed to verify whether our data allowed us to reject relationships in previous hypotheses. The results of these tests suggested that the competing tree topologies were not significantly better than our recovered topologies. Novel relationships were shown inside the Opisthokonta, for two species, Thecamonas trahens and Capsaspora owczarzaki. Additionally, some controversial phylogenetic positions among several eukaryotic groups were found. We discuss the relative positions of the Alveolata and Stramenopila groups, the latter being of special interest in our research group

    QuantPrime – a flexible tool for reliable high-throughput primer design for quantitative PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medium- to large-scale expression profiling using quantitative polymerase chain reaction (qPCR) assays are becoming increasingly important in genomics research. A major bottleneck in experiment preparation is the design of specific primer pairs, where researchers have to make several informed choices, often outside their area of expertise. Using currently available primer design tools, several interactive decisions have to be made, resulting in lengthy design processes with varying qualities of the assays.</p> <p>Results</p> <p>Here we present QuantPrime, an intuitive and user-friendly, fully automated tool for primer pair design in small- to large-scale qPCR analyses. QuantPrime can be used online through the internet <url>http://www.quantprime.de/</url> or on a local computer after download; it offers design and specificity checking with highly customizable parameters and is ready to use with many publicly available transcriptomes of important higher eukaryotic model organisms and plant crops (currently 295 species in total), while benefiting from exon-intron border and alternative splice variant information in available genome annotations. Experimental results with the model plant <it>Arabidopsis thaliana</it>, the crop <it>Hordeum vulgare </it>and the model green alga <it>Chlamydomonas reinhardtii </it>show success rates of designed primer pairs exceeding 96%.</p> <p>Conclusion</p> <p>QuantPrime constitutes a flexible, fully automated web application for reliable primer design for use in larger qPCR experiments, as proven by experimental data. The flexible framework is also open for simple use in other quantification applications, such as hydrolyzation probe design for qPCR and oligonucleotide probe design for quantitative <it>in situ </it>hybridization. Future suggestions made by users can be easily implemented, thus allowing QuantPrime to be developed into a broad-range platform for the design of RNA expression assays.</p

    PlnTFDB: an integrative plant transcription factor database

    Get PDF
    BACKGROUND: Transcription factors (TFs) are key regulatory proteins that enhance or repress the transcriptional rate of their target genes by binding to specific promoter regions (i.e. cis-acting elements) upon activation or de-activation of upstream signaling cascades. TFs thus constitute master control elements of dynamic transcriptional networks. TFs have fundamental roles in almost all biological processes (development, growth and response to environmental factors) and it is assumed that they play immensely important functions in the evolution of species. In plants, TFs have been employed to manipulate various types of metabolic, developmental and stress response pathways. Cross-species comparison and identification of regulatory modules and hence TFs is thought to become increasingly important for the rational design of new plant biomass. Up to now, however, no computational repository is available that provides access to the largely complete sets of transcription factors of sequenced plant genomes. DESCRIPTION: PlnTFDB is an integrative plant transcription factor database that provides a web interface to access large (close to complete) sets of transcription factors of several plant species, currently encompassing Arabidopsis thaliana (thale cress), Populus trichocarpa (poplar), Oryza sativa (rice), Chlamydomonas reinhardtii and Ostreococcus tauri. It also provides an access point to its daughter databases of a species-centered representation of transcription factors (OstreoTFDB, ChlamyTFDB, ArabTFDB, PoplarTFDB and RiceTFDB). Information including protein sequences, coding regions, genomic sequences, expressed sequence tags (ESTs), domain architecture and scientific literature is provided for each family. CONCLUSION: We have created lists of putatively complete sets of transcription factors and other transcriptional regulators for five plant genomes. They are publicly available through . Further data will be included in the future when the sequences of other plant genomes become available

    Chromosome 10 in the tomato plant carries clusters of genes responsible for field resistance/defence to Phytophthora infestans

    Get PDF
    AbstractThe main objective of the present study was to reanalyse tomato expression data that was previously submitted to the Tomato Expression Database to dissect the resistance/defence genomic and metabolic responses of tomato to Phytophthora infestans under field conditions. Overrepresented gene sets belonging to chromosome 10 were identified using the Gene Set Enrichment Analysis, and we found that these genes tend to be located towards the end of the chromosome 10. An analysis of syntenic regions between Arabidopsis thaliana chromosomes and the tomato chromosome 10 allowed us to identify conserved regions in the two genomes. In addition to allowing for the identification of tomato candidate genes participating in resistance/defence in the field, this approach allowed us to investigate the relationships of the candidate genes with chromosomal position and participation in metabolic functions, thus offering more insight into the phenomena occurring during the infection process

    RNAseq reveals hydrophobins that are involved in the adaptation of aspergillus nidulans to lignocellulose

    Get PDF
    Background Sugarcane is one of the world’s most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. Results In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. Conclusion This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose

    Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Get PDF
    Gomez-Porras J, Riano-Pachon DM, Dreyer I, Mayer JE, Mueller-Roeber B. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC GENOMICS. 2007;8(1): 260.Background: In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid ( ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an insilico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements ( CREs), ABRE and CE3, in thale cress ( Arabidopsis thaliana) and rice ( Oryza sativa). Results: Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element ( CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes ( ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion: Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be needed to test whether the observed differences are extrapolatable to monocots and dicots in general, and to understand how they contribute to the fine-tuning of the hormonal response. The outcome of our investigation can now be used to direct future experimentation designed to further dissect the ABA-dependent regulatory networks

    Las barreras de aprendizaje que inciden en la permanencia de los estudiantes de la Licenciatura en Educación Especial de la Fundación Universitaria los Libertadores

    Get PDF
    El presente trabajo se enfoca en como las barreras de aprendizaje han venido influenciando para que los estudiantes de Licenciatura en Educación Especial de la Fundación Universitaria Los Libertadores FULL lleguen a tomar la decisión de desertar del programa, debido a su bajo rendimiento académico, se hablará de las diferentes acciones que la Coordinación de Permanencia y Graduación Oportuna (PYGO) realizan para garantizar una permanencia en la Universidad, desde los diferentes profesionales y docentes consejeros . Así mismo se muestran algunos antecedentes que abarcan las barreras de aprendizaje desde la organización y la participación, el Ministerio de Educación Superior (MEN) establece unas categorías variables como la socioeconómica, individual, institucionales o académicas que afectan la permanencia en las instituciones de educación superior, estas variables pueden cambiar según el contexto y la situación de cada estudiant
    corecore