12,901 research outputs found

    Hybrid Focal Stereo Networks for Pattern Analysis in Homogeneous Scenes

    Full text link
    In this paper we address the problem of multiple camera calibration in the presence of a homogeneous scene, and without the possibility of employing calibration object based methods. The proposed solution exploits salient features present in a larger field of view, but instead of employing active vision we replace the cameras with stereo rigs featuring a long focal analysis camera, as well as a short focal registration camera. Thus, we are able to propose an accurate solution which does not require intrinsic variation models as in the case of zooming cameras. Moreover, the availability of the two views simultaneously in each rig allows for pose re-estimation between rigs as often as necessary. The algorithm has been successfully validated in an indoor setting, as well as on a difficult scene featuring a highly dense pilgrim crowd in Makkah.Comment: 13 pages, 6 figures, submitted to Machine Vision and Application

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Algorithmic decidability of Engel's property for automaton groups

    Full text link
    We consider decidability problems associated with Engel's identity ([[[x,y],y],,y]=1[\cdots[[x,y],y],\dots,y]=1 for a long enough commutator sequence) in groups generated by an automaton. We give a partial algorithm that decides, given x,yx,y, whether an Engel identity is satisfied. It succeeds, importantly, in proving that Grigorchuk's 22-group is not Engel. We consider next the problem of recognizing Engel elements, namely elements yy such that the map x[x,y]x\mapsto[x,y] attracts to {1}\{1\}. Although this problem seems intractable in general, we prove that it is decidable for Grigorchuk's group: Engel elements are precisely those of order at most 22. Our computations were implemented using the package FR within the computer algebra system GAP

    Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer

    Get PDF
    This is the final version. Available on open access from AIP Publishing via the DOI in this recordWe systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic Fe layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially at for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of of up to two in field.The authors like to acknowledge support via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). EH acknowledges support from EPSRC fellowship (EP/K041215/1). TK, TSS, MK and GJ acknowledge the German Research Foundation for funding through the collaborative research centers SFB TRR 227 Ultrafast spin dynamics (project B02) and SFB TRR 173 Spin+X as well as the Graduate School of Excellence Materials Science in Mainz (MAINZ, GSC 266). TK also acknowledges funding through the ERC H2020 CoG project TERAMAG/Grant No. 681917

    Few-layer MoS<inf>2</inf> saturable absorbers for short-pulse laser technology: Current status and future perspectives [Invited]

    Get PDF
    Few-layer molybdenum disul de (MoS2) is emerging as a promising quasi-two-dimensional material, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this article, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices and comment on the current status and future perspectives of MoS2-based pulsed lasers.The authors would like to thank J. R. Taylor for fruitful discussions. EJRK and TH acknowledge support from the Royal Academy of Engineering (RAEng).This is the author accepted manuscript. The final version is available from OSA via https://www.osapublishing.org/prj/abstract.cfm?URI=prj-3-2-A30

    Influence of supramolecular forces on the linear viscoelasticity of gluten

    Get PDF
    Stress relaxation behavior of hydrated gluten networks was investigated by means of rheometry combined with μ-computed tomography (μ-CT) imaging. Stress relaxation behavior was followed over a wide temperature range (0–70 °C). Modulation of intermolecular bonds was achieved with urea or ascorbic acid in an effort to elucidate the presiding intermolecular interactions over gluten network relaxation. Master curves of viscoelasticity were constructed, and relaxation spectra were computed revealing three relaxation regimes for all samples. Relaxation commences with a well-defined short-time regime where Rouse-like modes dominate, followed by a power law region displaying continuous relaxation concluding in a terminal zone. In the latter zone, poroelastic relaxation due to water migration in the nanoporous structure of the network also contributes to the stress relief in the material. Hydrogen bonding between adjacent protein chains was identified as the determinant force that influences the relaxation of the networks. Changes in intermolecular interactions also resulted in changes in microstructure of the material that was also linked to the relaxation behavior of the networks

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Joint Optical Flow and Temporally Consistent Semantic Segmentation

    Full text link
    The importance and demands of visual scene understanding have been steadily increasing along with the active development of autonomous systems. Consequently, there has been a large amount of research dedicated to semantic segmentation and dense motion estimation. In this paper, we propose a method for jointly estimating optical flow and temporally consistent semantic segmentation, which closely connects these two problem domains and leverages each other. Semantic segmentation provides information on plausible physical motion to its associated pixels, and accurate pixel-level temporal correspondences enhance the accuracy of semantic segmentation in the temporal domain. We demonstrate the benefits of our approach on the KITTI benchmark, where we observe performance gains for flow and segmentation. We achieve state-of-the-art optical flow results, and outperform all published algorithms by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201

    Elementary processes governing the evolution of road networks

    Get PDF
    Urbanisation is a fundamental phenomenon whose quantitative characterisation is still inadequate. We report here the empirical analysis of a unique data set regarding almost 200 years of evolution of the road network in a large area located north of Milan (Italy). We find that urbanisation is characterised by the homogenisation of cell shapes, and by the stability throughout time of high-centrality roads which constitute the backbone of the urban structure, confirming the importance of historical paths. We show quantitatively that the growth of the network is governed by two elementary processes: (i) `densification', corresponding to an increase in the local density of roads around existing urban centres and (ii) `exploration', whereby new roads trigger the spatial evolution of the urbanisation front. The empirical identification of such simple elementary mechanisms suggests the existence of general, simple properties of urbanisation and opens new directions for its modelling and quantitative description.Comment: 10 pages, 6 figure
    corecore