36 research outputs found

    Structural changes in activated wood-based carbons: correlation between specific surface area and localization of molecular-sized pores

    Get PDF
    Samples of maple were pyrolyzed and subsequently activated by carbon dioxide at different temperatures for various dwell times. The changes in wood structure were characterized by nitrogen adsorption isotherms, transmission electron microscopy (TEM) with selected-area electron diffraction (SAED), and scanning electron microscopy (SEM). Increasing pyrolysis temperatures promoted increased crystallization of graphitic wood components and mineral-like phases. The average pore diameter derived from nitrogen adsorption isotherms approximately correlated with the results obtained by high-resolution SEM and TEM. The highest surface area was found for samples containing considerable amounts of nanoperforated pit membranes located in intervascular pitting. High-resolution TEM examinations of membrane regions showed foam-like clusters with an average size of 1.7nm, which are attributed to the selective influence of CO2 activation on pyrolyzed cellulose and ligni

    Lingunite-a high-pressure plagioclase polymorph at mineral interfaces in doleritic rock of the Lockne impact structure (Sweden)

    Get PDF
    Lingunite nanocrystals and amorphous plagioclase (maskelynite) are identified at the contacts between augite and labradorite wedge-shaped interfaces in the doleritic rocks of the Lockne impact structure in Sweden. The occurrence of lingunite suggests that the local pressure was above 19 GPa and the local temperature overwhelmed 1000 °C. These values are up to 10 times higher than previous values estimated numerically for bulk pressure and temperature. High shock-induced temperatures are manifested by maskelynite injections into microfractures in augite located next to the wedges. We discuss a possible model of shock heterogeneity at mineral interfaces, which may lead to longer duration of the same shock pressure and a concentration of high temperature thus triggering the kinetics of labradorite transformation into lingunite and maskelynite

    On the multi-orbital band structure and itinerant magnetism of iron-based superconductors

    Full text link
    This paper explains the multi-orbital band structures and itinerant magnetism of the iron-pnictide and chalcogenides. We first describe the generic band structure of an isolated FeAs layer. Use of its Abelian glide-mirror group allows us to reduce the primitive cell to one FeAs unit. From density-functional theory, we generate the set of eight Fe dd and As pp localized Wannier functions for LaOFeAs and their tight-binding (TB) Hamiltonian, h(k)h(k). We discuss the topology of the bands, i.e. allowed and avoided crossings, the origin of the d6 pseudogap, as well as the role of the As pp orbitals and the elongation of the FeAs4_{4} tetrahedron. We then couple the layers, mainly via interlayer hopping between As pzp_{z} orbitals, and give the formalism for simple and body-centered tetragonal stackings. This allows us to explain the material-specific 3D band structures. Due to the high symmetry, several level inversions take place as functions of kzk_{z} or pressure, resulting in linear band dispersions (Dirac cones). The underlying symmetry elements are, however, easily broken, so that the Dirac points are not protected, nor pinned to the Fermi level. From the paramagnetic TB Hamiltonian, we form the band structures for spin spirals with wavevector qq by coupling h(k)h(k) and h(k+q)h (k+q). The band structure for stripe order is studied as a function of the exchange potential, Δ\Delta, using Stoner theory. Gapping of the Fermi surface (FS) for small Δ\Delta requires matching of FS dimensions (nesting) and dd-orbital characters. The origin of the propeller-shaped FS is explained. Finally, we express the magnetic energy as the sum over band-structure energies, which enables us to understand to what extent the magnetic energies might be described by a Heisenberg Hamiltonian, and the interplay between the magnetic moment and the elongation of the FeAs4 tetrahedron

    Induction of antitumor immunity through xenoplacental immunization

    Get PDF
    Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential

    Inter-site pair superconductivity: origins and recent validation experiments

    Full text link
    The challenge of understanding high-temperature superconductivity has led to a plethora of ideas, but 30 years after its discovery in cuprates, very few have achieved convincing experimental validation. While Hubbard and t-J models were given a lot of attention, a number of recent experiments appear to give decisive support to the model of real-space inter-site pairing and percolative superconductivity in cuprates. Systematic measurements of the doping dependence of the superfluid density show a linear dependence on superfluid density - rather than doping - over the entire phase diagram, in accordance with the model's predictions. The doping-dependence of the anomalous lattice dynamics of in-plane Cu-O mode vibrations observed by inelastic neutron scattering, gives remarkable reciprocal space signature of the inter-site pairing interaction whose doping dependence closely follows the predicted pair density. Symmetry-specific time-domain spectroscopy shows carrier localization, polaron formation, pairing and superconductivity to be distinct processes occurring on distinct timescales throughout the entire superconducting phase diagram. The three diverse experimental results confirm non-trivial predictions made more than a decade ago by the inter-site pairing model in the cuprates, remarkably also confirming some of the fundamental notions mentioned in the seminal paper on the discovery of high-temperature superconductivity in cuprates.Comment: Dedicated to Prof. K. A. Mueller on the Occasion of his 90th Birthda

    Investigating the role of TTP in mRNA decay and pre-mRNA processing

    No full text
    The AU-rich element (ARE) is a cis-encoded determinant within mRNA 3' untranslated regions (UTRs) that contributes to mRNA translation and stability in the cell. Tristetraprolin (TTP) is an RNA binding protein that specifically binds to mRNAs containing AREs and activates their rapid decay. TTP is rapidly activated following external stimulus and modulates the gene expression program of the responding cell. To better understand TTP- mediated mRNA decay activity, I identified the RNA binding protein hnRNP F as an RNA-independent interactor of TTP. I further characterized this interaction and observed that hnRNP F stimulated the decay of a subset of TTP-associated mRNAs, thus implicating hnRNP F in mRNA decay activated by TTP. Several possible mechanisms were tested but it remains to be determined how hnRNP F stimulates the decay of TTP-associated mRNAs. In addition to mRNA degradation, TTP appears to regulate gene expression through non-mRNA decay activities. I observed that TTP expression stimulated the 3' end processing of ARE-containing reporter mRNAs, leading to alternatively polyadenylated mRNAs with shortened 3' UTRs. This resulted in stabilization and loss of regulation of these mRNAs by TTP. The 3' end processing required an ARE and an upstream polyadenylation signal, and RNA binding of TTP was necessary but not sufficient for this activity. Thus, TTP appears to be a multifunctional protein, which in addition to mRNA decay activity promotes the 3' end processing of mRNAs, altering the 3' UTR composition and mRNA regulation in cell

    Formation of structure and properties of dielectric diamond-charged ceramics of the basis of aggregated powders

    No full text
    The aim of the work is to reveal salient features and to determine mechanisms of influence of diamond synthetic powders submicrometer aggregation upon structure and properties of diamond-charged ceramics. Ordered powder aggregate formation effect has been revealed for the first time and phenomenological description of this effect has been offered. An empirical problem set up of a diamond particle has been developed that allow to rationalize both dispersive interaction between particles and diamond-charged ceramics structure formation. Diamond particles optimal size for homogeneous diamond-charged ceramics construction has been developed theoretically and confirmed experimentally. Potentialities in principal to manufacture high-stability chip resistors on the basis of diamond-charged ceramics has been shown. A technique for high-stability chip resistors production with the usage of laser technology has been promoted. The introduced method allowed to improve a unit of the new secondary power sourceAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
    corecore