538 research outputs found

    Skeletal muscle specific genes networks in cattle

    Get PDF
    While physiological differences across skeletal muscles have been described, the differential gene expression underlying them and the discovery of how they interact to perform specific biological processes are largely to be elucidated. The purpose of the present study was, firstly, to profile by cDNA microarrays the differential gene expression between two skeletal muscle types, Psoas major (PM) and Flexor digitorum (FD), in beef cattle and then to interpret the results in the context of a bovine gene coexpression network, detecting possible changes in connectivity across the skeletal muscle system. Eighty four genes were differentially expressed (DE) between muscles. Approximately 54% encoded metabolic enzymes and structural-contractile proteins. DE genes were involved in similar processes and functions, but the proportion of genes in each category varied within each muscle. A correlation matrix was obtained for 61 out of the 84 DE genes from a gene coexpression network. Different groups of coexpression were observed, the largest one having 28 metabolic and contractile genes, up-regulated in PM, and mainly encoding fast-glycolytic fibre structural components and glycolytic enzymes. In FD, genes related to cell support seemed to constitute its identity feature and did not positively correlate to the rest of DE genes in FD. Moreover, changes in connectivity for some DE genes were observed in the different gene ontologies. Our results confirm the existence of a muscle dependent transcription and coexpression pattern and suggest the necessity of integrating different muscle types to perform comprehensive networks for the transcriptional landscape of bovine skeletal muscle

    Gene expression identifies metabolic and functional differences between intramuscular and subcutaneous adipocytes in cattle

    Get PDF
    Background This study used a genome-wide screen of gene expression to better understand the metabolic and functional differences between commercially valuable intramuscular fat (IMF) and commercially wasteful subcutaneous (SC) fat depots in Bos taurus beef cattle. Results We confirmed many findings previously made at the biochemical level and made new discoveries. The fundamental lipogenic machinery, such as ACACA and FASN encoding the rate limiting Acetyl CoA carboxylase and Fatty Acid synthase were expressed at 1.6–1.8 fold lower levels in IMF, consistent with previous findings. The FA elongation pathway including the rate limiting ELOVL6 was also coordinately downregulated in IMF compared to SC as expected. A 2-fold lower expression in IMF of ACSS2 encoding Acetyl Coenzyme A synthetase is consistent with utilisation of less acetate for lipogenesis in IMF compared to SC as previously determined using radioisotope incorporation. Reduced saturation of fat in the SC depot is reflected by 2.4 fold higher expression of the SCD gene encoding the Δ9 desaturase enzyme. Surprisingly, CH25H encoding the cholesterol 25 hydroxylase enzyme was ~ 36 fold upregulated in IMF compared to SC. Moreover, its expression in whole muscle tissue appears representative of the proportional representation of bovine marbling adipocytes. This suite of observations prompted quantification of a set of oxysterols (oxidised forms of cholesterol) in the plasma of 8 cattle exhibiting varying IMF. Using Liquid Chromatography-Mass Spectrometry (LC-MS) we found the levels of several oxysterols were significantly associated with multiple marbling measurements across the musculature, but (with just one exception) no other carcass phenotypes. Conclusions These data build on our molecular understanding of ruminant fat depot biology and suggest oxysterols represent a promising circulating biomarker for cattle marbling

    Desarrollo de habilidades para la vida e inclusión social a través del Proyecto MARACAS

    Get PDF
    El programa de Formación Competencial M.A.R.A.C.A.S (Motivando la Adecuada Recreación Activa y la Correcta Alimentación Saludable) para niños y adolescentes es una innovadora alternativa basada en el desarrollo de habilidades y competencias para la vida desde la perspectiva de las inteligencias múltiples (Juárez et al, 2011). Utiliza potentes motivadores como el deporte y la actividad física como impulsores del conocimiento. La estrategia de educación integral MARACAS para niños y jóvenes de 5 a 14 años favorece el desarrollo de habilidades cognitivas, sociales, personales y físico-motrices utilizando al deporte como mediación educativa El presente estudio tomo como ejes centrales el análisis estadístico descriptivo del promedio y la desviación estándar, la cual fue modificada para asignarle un porcentaje de presencia de la habilidad. Siempre = 100%, Casi siempre= 66%, Casi nunca= 33% y Nunca=0%. Todos los participantes estuvieron distribuidos por grupos de acuerdo a su edad. Los resultados más significativos, entre otros, determinan el avance de los participantes desde dos parámetros. El primero, a partir de un progreso significativo en las habilidades competenciales, y el segundo, desde una valoración progresiva y reveladora de las inteligencias múltiples, tomando como eje central los escenarios de aprendizaje en donde el alumno desarrolla de manera vivencial una forma alternativa de manifestar sus talentos y expresarlos en escenarios reales. MARACAS ofrece un enfoque complementario a la educación formal y fortalece las capacidades más destacadas de los participantes, descubriendo nuevos talentos y reparando las debilidades

    Impact of Global Warming on the Severity of Viral Diseases: A Potentially Alarming Threat to Sustainable Aquaculture Worldwide

    Get PDF
    With an ever-increasing human population, food security remains a central issue for the coming years. The magnitude of the environmental impacts of food production has motivated the assessment of the environmental and health benefits of shifting diets, from meat to fish and seafood. One of the main concerns for the sustainable development of aquaculture is the emergence and spread of infectious animal diseases in a warming climate. We conducted a meta-analysis to investigate the influence of global warming on mortality due to viral infections in farmed aquatic animals. We found a positive trend between increasing temperature and increasing viral virulence, with an increase in water temperature of 1 °C resulting in an increase in mortality of 1.47–8.33% in OsHV-1 infected oysters, 2.55–6.98% in carps infected with CyHV-3 and 2.18–5.37% in fishes infected with NVVs. We suggest that global warming is going to pose a risk of viral disease outbreaks in aquaculture and could compromise global food security

    Fuzzy branch‐and‐bound algorithm with owa operators in the case of consumer decision making

    Get PDF
    The ordered weighted averaging (OWA) operator is one of the most used techniques in the operator’s aggregation procedure. This paper proposes a new assignment algorithm by using the OWA operator and different extensions of it in the Branch‐and‐bound algorithm. The process is based on the use of the ordered weighted average distance operator (OWAD) and the induced OWAD operator (IOWAD). We present it as the Branch‐and‐bound algorithm with the OWAD operator (BBAOWAD) and the Branch‐and‐bound algorithm with the IOWAD operator (BBAIOWAD). The main advantage of this approach is that we can obtain more detailed information by obtaining a parameterized family of aggregation operators. The application of the new algorithm is developed in a consumer decision‐making model in the city of Barcelona regarding the selection of groceries by districts that best suit their needs. We rely on the opinion of local commerce experts in the city. The key advantage of this approach is that we can consider different sources of information independent of each other

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Analysis of gender equality competence present in cultural positions

    Get PDF
    Articulating the gender dimension in organizations is not easy because their members have to be trained to adopt positions that facilitate the implementation of solutions that help to combat inequalities. The aim of this article was to identify the gender equality competence present in the three types of cultural positions Castells proposed in members of a City Council in Sevilla-Spain, who wanted to implement gender mainstreaming. The participants were 27 people (16 women and 11 men). The method used was discourse analysis. The obtained results show that, while all competences were present in the project position, in the resistance position, there was none. In the legitimizers, we observed inconsistency in the discourse presented. This arouses considerations on the importance of knowing the gender equality competences in order to implement gender mainstreaming in organization

    Individual variability in cardiac biomarker release after 30 min of high-intensity rowing in elite and amateur athletes

    Get PDF
    This study had two objectives: (i) to examine individual variation in the pattern of cardiac troponin I (cTnI) and N-terminal pro-brain natriuretic peptide (NT-proBNP) release in response to high-intensity rowing exercise, and (ii) to establish whether individual heterogeneity in biomarker appearance was influenced by athletic status (elite vs. amateur). We examined cTnI and NT-proBNP in 18 elite and 14 amateur rowers before and 5 min, 1, 3, 6, 12, and 24 h after a 30-min maximal rowing test. Compared with pre-exercise levels, peak postexercise cTnI (pre: 0.014 ± 0.030 μg·L–1; peak post: 0.058 ± 0.091 μg·L–1; p = 0.000) and NT-proBNP (pre: 15 ± 11 ng·L–1; peak post: 31 ± 19 ng·L–1; p = 0.000) were elevated. Substantial individual heterogeneity in peak and time-course data was noted for cTnI. Peak cTnI exceeded the upper reference limit (URL) in 9 elite and 3 amateur rowers. No rower exceeded the URL for NT-proBNP. Elite rowers had higher baseline (0.019 ± 0.038 vs. 0.008 ± 0.015 μg·L–1; p = 0.003) and peak postexercise cTnI (0.080 ± 0.115 vs. 0.030 ± 0.029 μg·L–1; p = 0.022) than amateur rowers, but the change with exercise was similar between groups. There were no significant differences in baseline and peak postexercise NT-proBNP between groups. In summary, marked individuality in the cTnI response to a short but high-intensity rowing bout was observed. Athletic status did not seem to affect the change in cardiac biomarkers in response to high-intensity exercise
    corecore