6 research outputs found

    Post-fire salvage logging reduces carbon sequestration in Mediterranean coniferous forest

    Get PDF
    Post-fire salvage logging is a common silvicultural practice around the world, with the potential to alter the regenerative capacity of an ecosystem and thus its role as a source or a sink of carbon. However, there is no information on the effect of burnt wood management on the net ecosystem carbon balance. Here, we examine for the first time the effect of post-fire burnt wood management on the net ecosystem carbon balance by comparing the carbon exchange of two treatments in a burnt Mediterranean coniferous forest treated by salvage logging (SL, felling and removing the logs and masticating the woody debris) and Non-Intervention (NI, all trees left standing) using eddy covariance measurements. Using different partitioning approaches, we analyze the evolution of photosynthesis and respiration processes together with measurements of vegetation cover and soil respiration and humidity to interpret the differences in the measured fluxes and underlying processes. Results show that SL enhanced CO2 emissions of this burnt pine forest by more than 120 g C m−2 compared to the NI treatment for the period June–December 2009. Although soil respiration was around 30% higher in NI during growing season, this was more than offset by photosynthesis, as corroborated by increases in vegetation cover and evapotranspiration. Since SL is counterproductive to climate-change and Kyoto protocol objectives of optimal C sequestration by terrestrial ecosystems, less aggressive burnt wood management policies should be considered.This work was financed by INIA Project SUM2006-00010-00-00, by the Autonomous Organism of National Parks (MMA) Project 10/2005 and in part by the Spanish national CO2 flux tower network (Carbored-II; CGL2010-22193-C04-02), CGL 2008-01671, Consolider-Ingenio MONTESCSD2008-00040 and the European Community 7th 9 Framework Programme Project GHG-Europe (FP7/2007-2013; Grant Agreement 244122)

    Seasonality of net carbon exchanges of Mediterranean ecosystems across an altitudinal gradient

    No full text
    In the present climate change context it is important to understand the carbon balance seasonality of Mediterranean areas, that will suffer important changes in precipitation according to the last climate change predictions. This work analyzed the seasonality of carbon exchanges of three Mediterranean ecosystems according to a variety of water and temperature regimes due to differences in altitude (alpine, subalpine and lowland). Results show that the timing and duration of the growing season depended on temperature at the alpine site, while the dependence on water availability increased as altitude decreased. Thus, maximum values of net carbon uptake occurred in late spring for the alpine and subalpine sites (up to 60 and 30 gC

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    No full text
    Background: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien\u2013Dindo classification system. Results: A total of 3288 patients were included in the analysis, of whom 301 (9\ub72 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4\u20137) and 7 (6\u20138) days respectively (P < 0\ub7001). There were no significant differences in rates of readmission between these groups (6\ub76 versus 8\ub70 per cent; P = 0\ub7499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0\ub790, 95 per cent c.i. 0\ub755 to 1\ub746; P = 0\ub7659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34\ub77 versus 39\ub75 per cent; major 3\ub73 versus 3\ub74 per cent; P = 0\ub7110). Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data (Scientific Data, (2020), 7, 1, (225), 10.1038/s41597-020-0534-3)

    No full text
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions. © 2021, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    No full text
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible
    corecore