39 research outputs found

    Noise effects in extended chaotic system: study on the Lorenz'96 model

    Get PDF
    We investigate the effects of a time-correlated noise on an extended chaotic system. The chosen model is the Lorenz'96, a kind of toy model used for climate studies. The system is subjected to both temporal and spatiotemporal perturbations. Through the analysis of the system's time evolution and its time correlations, we have obtained numerical evidence for two stochastic resonance-like behaviors. Such behavior is seen when a generalized signal-to-noise ratio function are depicted as a function of the external noise intensity or as function of the system size. The underlying mechanism seems to be associated to a noise-induced chaos reduction. The possible relevance of those findings for an optimal climate prediction are discussed, using an analysis of the noise effects on the evolution of finite perturbations and errors.Comment: To appear in Statistical Mechanics Research Focus, Special volume (Nova Science Pub., NY, in press) (LaTex, 16 pgs, 14 figures

    Diffusion in Fluctuating Media: The Resonant Activation Problem

    Full text link
    We present a one-dimensional model for diffusion in a fluctuating lattice; that is a lattice which can be in two or more states. Transitions between the lattice states are induced by a combination of two processes: one periodic deterministic and the other stochastic. We study the dynamics of a system of particles moving in that medium, and characterize the problem from different points of view: mean first passage time (MFPT), probability of return to a given site (Ps0P_{s_0}), and the total length displacement or number of visited lattice sites (Λ\Lambda). We observe a double {\it resonant activation}-like phenomenon when we plot the MFPT and Ps0P_{s_0} as functions of the intensity of the transition rate stochastic component.Comment: RevTex, 15 pgs, 8 figures, submitted to Eur.Phys.J.

    Bulk Mediated Surface Diffusion: The Infinite System Case

    Get PDF
    An analytical soluble model based on a Continuous Time Random Walk (CTRW) scheme for the adsorption-desorption processes at interfaces, called bulk-mediated surface diffusion, is presented. The time evolution of the effective probability distribution width on the surface is calculated and analyzed within an anomalous diffusion framework. The asymptotic behavior for large times shows a sub-diffusive regime for the effective surface diffusion but, depending on the observed range of time, other regimes may be obtained. Montecarlo simulations show excellent agreement with analytical results. As an important byproduct of the indicated approach, we present the evaluation of the time for the first visit to the surface.Comment: 15 pages, 7 figure

    Bulk Mediated Surface Diffusion: Finite System Case

    Full text link
    We address the dynamics of adsorbed molecules (a fundamental issue in surface physics) within the framework of a Master Equation scheme, and study the diffusion of particles in a finite cubic lattice whose boundaries are at the z=1z=1 and the z=Lz=L planes where L=2,3,4,...L = 2,3,4,..., while the xx and yy directions are unbounded. As we are interested in the effective diffusion process at the interface z=1z = 1, we calculate analytically the conditional probability for finding the system on the z=1z=1 plane as well as the surface dispersion as a function of time and compare these results with Monte Carlo simulations finding an excellent agreement.Comment: 19 pages, 8 figure

    Invited review: KPZ. Recent developments via a variational formulation

    Get PDF
    Recently, a variational approach has been introduced for the paradigmatic Kardar--Parisi--Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation alpha+z=2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.Comment: 16 pages, 2 figure

    The Use of Rank Histograms and MVL Diagrams to Characterize Ensemble Evolution in Weather Forecasting

    Get PDF
    13 páginas, 9 figuras.-- El pdf del artículo es la versión pre-print.Rank Histograms are suitable tools to assess the quality of ensembles within an ensemble prediction system or framework. By counting the rank of a given variable in the ensemble, we are basically making a sample analysis, which does not allow us to distinguish if the origin of its variability is external noise or comes from chaotic sources. The recently introduced Mean to Variance Logarithmic (MVL) Diagram accounts for the spatial variability, being very sensitive to the spatial localization produced by infinitesimal perturbations of spatiotemporal chaotic systems. By using as a benchmark a simple model subject to noise, we show the distinct information given by Rank Histograms and MVL Diagrams. Hence, the main effects of the external noise can be visualized in a graphic. From the MVL diagram we clearly observe a reduction of the amplitude growth rate and of the spatial localization (chaos suppression), while from the Rank Histogram we observe changes in the reliability of the ensemble. We conclude that in a complex framework including spatiotemporal chaos and noise, both provide a more complete forecasting picture.We acknowledge financial support from MEC, Spain, through Grant No. CGL2007- 64387/CLI, and also thank the AECID, Spain, for support through projects A/013666/07 and A/018685/08. JAR thanks the MEC, Spain, for the award of a Juan de la Cierva fellowship. HSW thanks to the European Commission for the award of a Marie Curie Chair during part of the development of this work.Peer reviewe

    Effect of Non Gaussian Noises on the Stochastic Resonance-Like Phenomenon in Gated Traps

    Get PDF
    We exploit a simple one-dimensional trapping model introduced before, prompted by the problem of ion current across a biological membrane. The voltage-sensitive channels are open or closed depending on the value taken by an external potential that has two contributions: a deterministic periodic and a stochastic one. Here we assume that the noise source is colored and non Gaussian, with a qq-dependent probability distribution (where qq is a parameter indicating the departure from Gaussianity). We analyze the behavior of the oscillation amplitude as a function of both qq and the noise correlation time. The main result is that in addition to the resonant-like maximum as a function of the noise intensity, there is a new resonant maximum as a function of the parameter qq.Comment: Communication to LAWNP01, Proceedings to be published in Physica D, RevTex, 8 pgs, 5 figure

    Trapping Dynamics with Gated Traps: Stochastic Resonance-Like Phenomenon

    Full text link
    We present a simple one-dimensional trapping model prompted by the problem of ion current across biological membranes. The trap is modeled mimicking the ionic channel membrane behaviour. Such voltage-sensitive channels are open or closed depending on the value taken by a potential. Here we have assumed that the external potential has two contributions: a determinist periodic and a stochastic one. Our model shows a resonant-like maximum when we plot the amplitude of the oscillations in the absorption current vs. noise intensity. The model was solved both numerically and using an analytic approximation and was found to be in good accord with numerical simulations.Comment: RevTex, 5 pgs, 3 figure

    Resonant phenomena in extended chaotic systems subject to external noise: the Lorenz'96 model case

    Get PDF
    We investigate the effects of a time-correlated noise on an extended chaotic system. The chosen model is the Lorenz'96, a kind of "toy" model used for climate studies. Through the analysis of the system's time evolution and its time and space correlations, we have obtained numerical evidence for two stochastic resonance-like behavior. Such behavior is seen when both, the usual and a generalized signal-to-noise ratio function are depicted as a function of the external noise intensity or the system size. The underlying mechanism seems to be associated to a "noise-induced chaos reduction". The possible relevance of these and other findings for an "optimal" climate prediction are discussed.Comment: Submitted to Europhysics Letters (LaTex, 12 pgs, 5 figures
    corecore