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Abstract

We investigate the effects of a time-correlated noise on an extended chaotic system. The chosen

model is the Lorenz’96, a kind of toy model used for climate studies. The system is subjected to both

temporal and spatiotemporal perturbations. Through the analysis of the system ′s time evolution

and its time correlations, we have obtained numerical evidence for two stochastic resonance-like

behaviors. Such behavior is seen when a generalized signal-to-noise ratio function are depicted

as a function of the external noise intensity or as function of the system size. The underlying

mechanism seems to be associated to a noise-induced chaos reduction. The possible relevance of

those findings for an optimal climate prediction are discussed, using an analysis of the noise effects

on the evolution of finite perturbations and errors.
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I. INTRODUCTION

It is well known that noise and chaos represent, respectively, two kinds of essentially

different phenomena. The former is induced by genuine stochastic sources, while the ran-

domness of the later is pseudo and is deterministic in its origin. The spatiotemporal chaos

is intrinsically irregular in both space and time and represents a prototype of deterministic

randomness. It is interesting to see what would come about as a result of the interaction

between these two irregularities that are essentially distinct.

As the influence of noises on low-dimensional dynamics systems has been studied exten-

sively [1, 11], much research interest has nowadays shifted to spatially extended system, a

situation that is apparently much more complicated [12].

In the spatially extended situations, the way in which the noise takes effect is not obvious

and the deterministic description usually cannot give the right results. It is known that noise-

induced phenomena have come about as a consequence of nonlinear interaction between the

noise and the deterministic dynamics. The spatiotemporal stochastic resonance are believed

to have potential importance, for instance, in the area of signal and image processing, pattern

formation, social and economical as well as climate dynamics [1, 3].

Here we consider a fully study on the Lorenz’96 model, driven by two kinds of pertur-

bations, a deterministic perturbation given by the own chaotic behavior of the model and

a stochastic one which we have assumed as an effective way of including a more realistic

evolution. The relevance of this model rest on the fact that it represents a simple but still

realistic description of some physical properties of global atmospheric models.

Manifestations of noise on other characteristics of spatiotemporal chaos such as Lyapunov

exponents and dimensions have not been considered. The results presented here provided

a first step in order to explore the possibilities of complex dynamics coming out from the

interaction between chaos and noise clearly. Further investigation along this line is desirable.

This work is organized as follows: in section II we describe the Lorenz’96 model assuming

that its evolution is governed by both a deterministic and a stochastic processes. In section

III we present and discuss numerical simulations of the Lorenz’96 equation, describing qual-

itatively the interaction of the real noise and the deterministic noise on the time evolution of

the system. In section IV we discuss the important problem of the perturbations and errors

in the Lorenz’96 evolution. Finally in section V we present the conclusions of our work as
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well as possible implications and the relevance of this study on the actual climate evolution.

II. THE LORENZ’96 MODEL

The equations corresponding to the Lorenz’96 model are

ẋj(t) = −xj−1(xj−2 − xj+1) − xj + F, (1)

where ẋj indicates the time derivative of xj

Fj(t) = Fmed + Ψj(t), (2)

with Ψj(t) a dichotomic process. That is, Ψj(t) adopts the values ±∆ with a transition

rate γ: each state changes according to the waiting time distribution ϕi(t) ∼ e−γt. The

noise intensity for this process is defined through ξ = ∆2

2γ
. In this work we have supposed

that the system is subjected to a spatiotemporal perturbation as well as a temporal one.

The first perturbation is achieved when F depends on both j and t variables, meanwhile

for temporal perturbation the F function only depends on t. In order to simulate a scalar

meteorological quantity extended around a latitude circle, we consider periodic boundary

conditions x0 = xN , x−1 = xN−1.

As indicated before, the Lorenz’96 model has been heuristically formulated as the sim-

plest way to take into account certain properties of global atmospheric models. The terms

included in the equation intend to simulate advection, dissipation, and forcing respectively.

In contrast with other toy models used in the analysis of extended chaotic systems and based

on coupled map lattices, the Lorenz’96 model exhibits extended chaos when the F parame-

ter exceeds a determinate threshold value (F > 9/8) with a spatial structure in the form of

moving waves. The length of these waves is close to 5 spatial units. It is worth noting that

the system has scaled variables with unit coefficients, hence the time unit is the dissipative

decay time. In addition we adjust the value of the parameter F to give a reasonable signal

to noise ratio (Lorenz considered F = 8), so the model could be most adequate to perform

basic studies of predictability.
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A. System Response

As a measure of the SR system’s response we have used the signal-to-noise ratio (SNR)

[1]. To obtain the SNR we need to previously evaluate S(ω), the power spectral density

(psd), defined as the Fourier transform of the correlation function [21, 22]

S(ω) =

∫
∞

−∞

eiωτ〈xj(0)xj(τ)〉 dτ, (3)

where 〈 〉 indicates the average over realizations. As we have periodic boundary conditions

simulating a closed system, 〈xj(0)xj(τ)〉 has a homogeneous spatial behavior. Hence, it is

enough to analyze the response in a single site.

We consider two forms of SNR. In one hand the usual SNR measure at the resonant

frequency ωo (that is, in fact, at the frequency associated to the highest peak in S(ω)) is

SNR =

∫ ωo+σ

ωo−σ
d̟S(̟)∫ ωo+σ

ωo−σ
d̟Sback(̟)

, (4)

where 2σ is a very small range around the resonant frequency ωo, and Sback(ω) corresponds

to the background psd. On the other hand we consider a global form of the SNR (SNRglob)

defined through

SNRglob =

∫ ωmax

ωmin
dωS(ω)∫ ωmax

ωmin
dωSback(ω)

, (5)

where ωmin and ωmax define the frequency range where S(ω) has a reach peak structure

(with several resonant frequencies).

III. STOCHASTIC RESONANCE-LIKE EFFECTS

A. System Time Evolution

In this section we present numerical simulations of a Lorenz ’96 system subjected to both

temporal and spatiotemporal noise perturbations. The typical numbers we have used in our

simulations are: averages over 103 histories, and ∼ 104 simulation time steps (within the

stationary regime, see later).

We have analyzed the typical behavior of trajectories as x1(t) − xmed−T , where xmed−T

is the time average. When the Lorenz ’96 system evolves without external noise (Fj(t) is

constant), the time evolution shows a random-like behavior. As can be seen in Fig. 1-a
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FIG. 1: System parameters N = 128, FMed = 5. (a) Time evolution without noise. (b) Time

evolution with noise ∆ = 1, γ = 0.05.

where we describe the |x1 −x1MedT |, the main feature is that the amplitude of the oscillator

is almost constant over all the time. If the system is subject to a true random force, described

like in Eq.[1] as shown in Fig. 1 - b, then the temporal oscillator response decays, that is

the interaction between the intrinsic evolution and the external noise produces dissipation

on the system. Hence the time evolution of the system consists of a transitory regime and

a stationary one.

We have assumed that this decay can be adjust by an exponential law (|x1 −x1 Med T | ∼

exp(−λt)). Figures 2-a depicts the λ dependence on the transition rate γ for a spatiotemporal

evolution. The figure shows the weak dependence of λ on γ for two FMed parameters. In

one hand the temporal decay parameter depends on the Fmed parameter as can be seen in

the insert of the Fig. 2-a. On the other hand there exists a clear dependence of λ when

the system is subject to only temporal perturbation (see Fig. 2 - b). Two regions can be

observed, firstly a quasi linear grow for a low rate transitions and a saturation regime for

large γ. It is worth remarking here that this saturation regime is not the same than that for

a spatiotemporal perturbation. The indicated time decay is important as we are interested

in studying the noise effects on the stationary regime.
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FIG. 2: (a) Spatiotemporal evolution. Decay rate vs. transition rate ×FMed = 6, +FMed = 5,

N = 64 Insert: Decay rate vs. FMed (b) Temporal evolution. FMed = 6 circles, FMed = 5 squares.

B. Resonant-like behavior

Figure 3-a shows the power spectrum density (psd) for two cases, the Lorenz’96 model

without noise (continuous line) and when subject to a dichotomic noise (dash line). From

the figure it is apparent that the simultaneous action of both deterministic and stochastic

noises induces a background reduction. The consequence of this effect can be appreciated in

the Fig. 3 - b where it is possible to anticipate, and identify, the existence of a resonance-like

behavior when the global signal to noise (SNRGlobal) is depicted as a function of the noise

intensity (∆). Indeed the response for FMed = 5 is better than for FMed = 6. The insert

of the figure shows the SNRGlobal response as a function of the FMed parameter for two

different noise intensities. We can see that the response is high for low values of FMed (low

developed chaos) and that is almost constant for large values of FMed (well developed chaos).

We have also studied the response dependence on the transition rate γ. Figure 4-a

(spatiotemporal noise for two FMed) and Fig. 4-b (spatiotemporal and temporal noise) show

these behaviors. Figure 4-a shows that there is a weak dependence of the SNRGlobal for

low values of γ. On one hand, in general for the spatiotemporal noise, the SNRGlobal is

constant and a weak dependence with the FMed is apparent. On the other hand, there exists

a dependence of the SNRGlobal when temporal noise is applied. Again, we can distinguish

two regimes: a first linear one for low transition rate (γ < 0.5) and a quasi constant regime

for γ > 0.5. The figure also shows that the SNR response is different when the system is
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FIG. 3: (a) Power spectral density. Solid line: Lorenz 96 without noise. Dash line: Lorenz 96

evolution with ∆ = 0.1, FMed = 5, N = 128. (b) Signal to noise ratio for FMed = 5 circles,

FMed = 6 squares. Insert: signal to noise ratio as a function of FMed.
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FIG. 4: (a) Spatiotemporal evolution. Signal to noise ratio as a function of the transition rate.

FMed = 5 circles, FMed = 6 squares. (b)Spatiotemporal (circle) and temporal (square) SNR for a

N = 64 system, with ∆ = 0.1.

subject to temporal or spatiotemporal perturbations. It is important to remark that for

large γ the temporal SNR is larger than for spatiotemporal perturbations.

Finally in Figs. 5-a and 5-b we show the results obtained for the behavior of the global

SNR as a function of the system size. The figures show a resonant-like behavior for a size
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FIG. 5: Signal to noise ratio for (a)spatiotemporal evolution . (b) Temporal evolution. Open circle

correspond to FMed = 5, square to FMed = 6.

around 80 in the low developed chaos case, meanwhile this phenomenon is weaker when the

chaos is more developed. This behavior is analogous to the so called system size stochastic

resonance [23]

At this point it is worth to comment on the similarities of the SR-like phenomena found

here and the so called internal signal SR [24]. Previous studies have shown that in some

systems having an internal typical frequency, SR can occur not only at the frequency of

an external driving signal, but also at the frequency corresponding to the internal periodic

behavior [24]. Regarding the present mechanism of SR, what we can indeed remark is that

the increase in the SNR is related not to a reinforcement of the peak high respect to the

noisy background at a given frequency, but with a reduction of the pseudo (or deterministic)

noisy background when turning on the real noise. That is, the interplay between “real”

noise and “deterministic” noise conforms a kind of noise-induced chaos reduction. Figure 3a

shows, for fixed values of F and γ, the behavior of S(ω) in both cases: with (∆ 6= 0) and

without noise (∆ = 0). The above indicated reduction trend, as the real noise is turned on,

is apparent.

The above indicated trend seems to be also responsable of the behavior observed in Fig.

4a, as γ also enters into de definition of the noise intensity. From Fig. 4b it becomes clear

that the spatial-temporal noise has a stronger influence than the temporal one on the system

response.
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IV. FINITE PERTURBATIONS AND ERRORS

The exponential growth of small initial perturbations is the main effect of chaos and

the origin of the lack of prediction in deterministic dynamical systems. This growth is

not homogeneous but localized in some unstable directions that are fix in low dimensional

cases (usual localization) and moving in the case of extended chaos (dynamic localization)

[25]. Moreover, in a real system perturbations do not grow indefinitely but saturate by the

action of non-linearities. Hence, in real situations we must deal with finite perturbations [26]

that, for small enough initial perturbations, develop in two regimes, the infinitesimal one

characterized by a exponential growth localized in some directions and the above mentioned

non-linear regime in which saturation by non-linear effects destroy the exponential growth

as well as the gained localization [27].

An important problem in predictability analysis is just the characterization and quantifi-

cation of both the exponential growth and the degree of localization. The Lyapunov theory

of perturbation analysis has been a traditional tool to solve particulary the first part of this

problem related with the exponential growth. In the case of spatial chaos there is a recent

theory that accounts for both parts in a very convenient form. It is based on mapping

perturbations in rough surfaces trough the application of a logarithmic transformation (the

Hopf-Cole transformation). The use of this mapping simplifies the analysis of perturbations

due to several reasons; the statistics in the mapped space is Gaussian (or Poissonian, etc..)

instead of being log-normal (log-Poisson, etc..) [28]. Moreover, the growth of rough inter-

faces is supported by a well established theory with well defined time and length scales that

are connected by scaling laws [29], and finally there are universal types of growth which

offers very good forms of characterization. As we show in the next sections the use of this

mapping provides us with a powerful tool to analyze the interplay of chaos and noise in a

spatial chaotic system.

A. The Mean-Variance of Logarithms diagram for perturbations and errors

Finite perturbations from the original Eq.[1] are obtained by evolving with exactly

the same equation (noise included) a perturbed initial condition x′i(0) = xi(0) + δxi(0). At

a longer time finite perturbations are then given by the difference δxi(t) = xi(t)− x′i(t). We
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refer to it as a perturbation because only changes in the initial conditions are considered.

In this aspect the noise, which is the same in both realizations, acts as deterministic and

can be considered as a parametrization of small scale phenomena. On the other hand the

definition of finite error is the same ǫi(t) = xi(t)− x′i(t) but now the evolution of both the

control system (xi(t)) and the perturbed one (x′i(t)) are obtained with different realizations

of noise.

In the infinitesimal regime of finite fluctuations one can write an equation for perturba-

tions just linearizing around the control trajectory, that reads

dδxj

dt
= xj−1δxj+1 − xj−1δxj−2 + (xj+1 − xj−2)δxj−1 − δxj , (6)

while for for errors we have

dδXj

dt
= Xj−1δXj+1 −Xj−1δXj−2 + (Xj+1 −Xj−2)δXj−1 − δXj + ψi(t), (7)

that is the same equation, but including an additive noise term ψi(t) = Fi(t)−F
′

i (t). Hence,

the great difference between perturbations and errors is that the first have a multiplicative

character while the second include an additive fluctuation. As we show in the following this

is an important fact in order to reach localization.

Therefore, the multiplicative character of perturbations suggests a logarithmic transfor-

mation Hi(t) = log(|δxi(t)| to deal with more homogeneous relative fluctuations [26]. This

can be achieved by using the Hopf-Cole transformation in Eq.[6] that, considering only the

first two terms of the continuous limit
δxj+n

δxj
∼ 1 + n∂xh + n2

2
(∂xxh+ (∂xh)

2) gives

∂tH(t) ∼ ξ(x, t)∂xH(x, t) − ξ(x, t)
1

2
(∂xxH + (∂xH)2) + η(x, t). (8)

We can now interpret the above equation as the growth of a rough surface H(x, t) with

random diffusion and drift ξ(j, t) = 3xj−1−xj+1 +xj−2, η(j, t) = xj+1−xj−2−1. Note that,

from this point of view, we are considering the original field x(t) as an equivalent noise, hence

it is the noise generated by the chaotic system itself, whose stochastic characterization has

been obtained in the previous sections. Hence ξ and η become colored noises in space and

time. The effect of the external noise F (t) over the perturbations are indirectly accounted

for by changes in x(t).

Let us now introduce the Mean-Variance of Logarithms (MVL) diagram [30] in order to

have a graphical representation of the exponential growth and localization. It is achieved by
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representing the mean value M(t) = 〈H(x, t)〉 and the variance 〈h(x, t)2〉, ( with h(x, t) =

H(x, t)−H(x, t)), ofH(x, t) (where <>means average over the ensemble, and Ā corresponds

to the space average), the logarithm of the perturbations. Note that the velocity of the

mapped surface λ = ˙H(x, t) accounts for the exponential growth since in essence it is the

logarithm of the zero norm of perturbations, namely, the main Lyapunov exponent [26, 28].

Hence M = λt is t times the main Lyapunov exponent. On the other hand we know that

the correlation length of the surface, that evolves as a power law lc(t) ∼ t1/z, accounts for

the degree of localization, and the variance, which is the width of the surface, is related

with this quantity as V (t) ∼ lc(t)
2α [26, 28]. z and α are respectively the dynamic and

roughness exponents of a rough interface. They exhibit universal values that in our case

(KPZ universality) are z = 3/2, α = 1/2. In summary, depicting V (t) against M(t) we have

a graphical picture of the acquired localization versus the exponential growth.

B. Finite perturbations without noise

The typical graph of a finite perturbation (see Figs. 6-a and 6-b) shows an initial regime

corresponding to the infinitesimal evolution towards the main Lyapunov vector, which hap-

pens increasing spatial correlation and localization, hence we show an increasing of ω2 (dis-

persion), followed by a second regime where the growth is collapsed by non-linearities and

localization becomes destroyed [27]. We have shown MVL diagrams in two cases, varying

the degree of chaos with the parameter FMed (Fig. 6-a) and varying the system size N . In

the first case we observe that the highest degree of localization is got for the case of less

developed chaos (ω2 ∼ 6.5 with FMed ∼ 5). Although it is not evident from intuition it can

be expected since in this case the intensity of the deterministic noise, given by the area of

the spectrum of ξ, is greater than in the case of more developed chaos. It is worth observing

the high level of localization obtained, ω2 ∼ 6, in this case. Despite of being a case of low

developed chaos the effect on spatial propagation of perturbations is very strong. Note that

in all cases in this figure infinitesimal fluctuations saturate by non-linearities since we are

dealing with an enough large system, N = 128. By contrast, in the Fig. 6-b we show how

with small systems saturation due to finite size takes place. With very small size, N = 32,

saturation by finite size only allows a small localization (ω2 ∼ 2), that grows for larger

systems, ω2 ∼ 3 for N = 64 and ω2 ∼ 4 for N = 128. This fact can also be expected from
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the mapping to rough interfaces. The width of a rough interface in the KPZ universality

scales with the system size as ω2 ∼ N . This scaling

C. Localization of perturbations and errors

In the figure 7 (see Figs. 7-a and 7-b)we show the MVL diagram of (a) perturbations

and (b) errors for distinct values of the noise amplitude. In a first look we observe that the

effect of noise seems to be irrelevant in the case of perturbations (see Fig. 7-a) but it is very

important in the case of errors (see Fig. 7-b). This is an interesting result that shows the

differences between multiplicative and additive fluctuations. In the case of perturbations the

external noise keeps the multiplicative character of the evolution of perturbations (Eq.[6)

and it only acts changing the equivalent deterministic noise trough ξ(t). As a consequence

the evolution of perturbations results slight affected by noise. On one hand in Fig. 7-a

we can see a very high level of localization ω2 > 4 in all cases. On the other hand, errors

evolve with the external noise as an additive fluctuation. Then, a competition between the

deterministic multiplicative noise, that tries to localize the error (increasing of ω2), against

the additive external fluctuation that does not produce localization, occurs as observed in

the figure. Important changes in localization, ω2 = 4, 3, 2.5 for distinct noise amplitudes

(∆ = 0, 0.001, 0.01) are shown in this figure.

V. CONCLUSIONS

We have investigated the effect of a time-correlated noise on an extended chaotic system,

analyzing the competence between the indicated deterministic or pseudo-noise and the real

random process. For our study we have chosen the Lorenz’96 model [18] that, in spite of

the fact that it is a kind of toy model, is of interest for the analysis of climate behavior

[17, 20]. It is worth remarking that it accounts in a simple way for the spatial structure of

geostrophic waves and the dynamics of tropical winds. The time series obtained at a generic

site xi(t) mimics the passing of such waves, which is in fact a typical forecast event. We have

assumed that the unique model parameter F is time dependent and composed of two parts,

a constant deterministic, and a stochastic contribution in both temporal and spatiotemporal

forms.
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FIG. 6: MVL graphics varying (a)FMed parameter, Open circle FMed = 5, Square FMed = 6 and

Cross FMed = 8, for N = 128 . (b)System Size. Open circle N = 32, Square N = 64 and Cross

N = 128. Common parameters, ∆=0, Amp = 10−8.
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FIG. 7: MVL graphics for (a) perturbations evolution. (b) errors evolution. Open circle corre-

sponds to non-noise evolution ∆ = 0, square to ∆ = 0.001 and cross to ∆ = 0.01. Common

parameters, N = 128, FMed = 8.0, Amp = 10−8.

We have done a thorough analysis of the system’s temporal evolution and its time cor-

relations. The action of a stochastic noise on the Lorenz’96 system produces a dissipation

on the time evolution. This dissipation essentially depends on the FMed parameter. Fur-

thermore our results show numerical evidence for two SR-like behaviors. In one hand a

“normal” SR phenomenon that occurs at frequencies that seems to correspond to a system’s
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quasi-periodic behavior. On the other hand, we have found a SSSR-like behavior, indicating

that there is an optimal system size for the analysis of the spatial system’s response. As

indicated before, the effect of noise is stronger when the chaos is underdeveloped.

We argue that these findings are of interest for an optimal climate prediction. It is clear

that the inclusion of the effect of an external noise, that is a stochastic parametrization

of unknown external influences, could strongly affect the deterministic system response,

particularly through the possibility of an enhanced system’s response in the form of resonant-

like behavior. It is worth here remarking the excellent agreement between the resonant

frequencies and wave length found here, and the estimates of Lorenz [19].

The effect of noise is weak respect to changes in the spatial structure, with the

main frequencies remaining unaltered, but it is strong concerning the strength of the

“self-generated” deterministic noise. We expect that in such a system and at the resonant

frequencies, forecasting would be improved by the external noise due to the effect of

suppression of the self-generated chaotic noise. Such an improvement will become apparent

through the analysis of the localization phenomenon in the MVL diagrams. The detailed

analysis of such an aspect will be the subject of a forthcoming study [31].
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